

ATTACHMENTS

Evaluation of Silica Removal Alternatives Mint Farm Regional Water Treatment Plant

PREPARED FOR: City of Longview, WA & Beacon Hill Water and Sewer District
PREPARED BY: CH2M
DATE: May 18, 2017
PROJECT NUMBER: 650582.03.35.13.03
REVISION NO.: 5

Attachment A

Longview, WA

Electrocoagulation: Silica Reduction in Municipal Water Supply

Treatability Summary

December 9, 2016

CONFIDENTIAL

Introduction

WaterTectonics (WT) conducted a treatability study for the City of Longview, Washington testing the efficacy of Wavelonics Electrocoagulation (EC) to reduce/remove silica to less than 30 mg/L (Table 1) in the existing municipal water supply. In addition, WaterTectonics benchmarked electrocoagulation's efficacy against chemical treatment utilizing multiple different chemicals containing aluminum which is a known process for silica reduction. Linear regression equations were calculated for each data set to establish an aluminum dosage and associated cost for each treatment to reduce silica to 30 mg/L. The projected operating cost for EC and each chemical treatment tested are presented in this report. The report's conclusion illustrates the two lowest operational costs for reducing silica to 30 mg/L is utilizing EC and Sodium Aluminate.

The design of testing, focused on dissolved silica removal by co-precipitation with aluminum EC as well as co-precipitation with multiple chemicals for comparison. WT utilized published data (Sandia 2011) and its past testing experience in conducting its treatability tests to document the efficacy of EC and PAC for the removal of dissolved silica through a co-precipitated process utilizing aluminum hydroxide in either a formulated chemical or an electro-chemical reaction. Lastly, WT examined the efficacy of treatment, by EC and the other chemicals, by also treating samples that had been filtered and chlorinated by the City's current treatment process.

In Table 1, are the measured parameters with maximum contaminant levels (MCLs) and secondary maximum contaminant levels (SMCLs).

Table 1 City of Longview, WA treatment goals, MCL's and SMCL's.

Parameter	Unit	Treatment Goal	MCL	SMCL
Aluminum	mg/L	-	-	0.05 to 0.2
Arsenic	mg/L	-	0.01	-
Calcium	mg/L	-	-	-
Iron	mg/L	-	-	0.3
Magnesium	mg/L	-	-	-
Manganese	mg/L	-	0.05	-
pH	s.u.			6.5 – 8.5
Silica, Dissolved	mg/L	30	-	-
Hardness	mg CaCO ₃ /L	-	-	-
Total Alkalinity	mg CaCO ₃ /L	-	-	-

Methods

WT received samples from two different locations within the treatment process. City of Longview provided five gallons of raw well water prior to any of the municipality's existing pretreatment processes and fifteen gallons of water post pre-treatment that includes prechlorination and filtration with greensand. The filtered water was collected prior to final pH adjustment with sodium hydroxide and any fluoridation.

A five-gallon bucket of sample was thoroughly mixed prior to beginning the treatability testing. The samples were treated using batch treatment laboratory-scale EC. 500 mL samples were tested at different levels of EC treatment by maintaining the current and varying the treatment time. Based on Faraday's Law, this created the scenario to examine how different theoretical aluminum dosages would impact the reduction of Silica with electrocoagulation. Similarly, testing was also conducted with Kemira PAX-XL8 polyaluminum chloride (PAC) dosing aluminum at the same theoretical equivalent to the EC samples. The testing utilizing PAC also required the addition of sodium hydroxide in order to maintain the pH close to 7.7, the City's target pH for corrosion control.

All samples were rapid mixed followed by slow mixing and settling. After settling, the supernate was filtered through 8 μm paper filters using a vacuum apparatus simulating granular media filtration. Aluminum concentrations ranged from 3 mg/l to 30 mg/L for EC treatments and 3 mg/l to 90 mg/L for PAC treatments. All samples were tested for the parameters listed in Appendix A.

Results

Electrocoagulation

Raw Water

In the initial raw water sample, iron and manganese oxidized in the water sample bucket after it had been opened for a few days. As a result, a fresh 10-gallon sample of raw water was collected on October 25, 2016 to complete the treatability testing. The two raw water samples were analyzed and were found to have similar influent and treated water quality (Table 2,Table 3).

Beaker testing was initially conducted with 30 mg/L Al EC using the raw water sample. The 30 mg/L Al EC set was also tested with chlorination using sodium hypochlorite dosed at 5 mg Cl₂/L, simulating the existing prechlorination step in the water treatment process. Following EC and stirring a large floc formed that settled leaving a clear supernate (Figure 1). Testing with filtered water determined that a 30 mg/L Al EC treatment was required to meet the water quality goal. Two liters of raw water were treated with 30 mg/L Al EC for the final treatment with and without oxidation using sodium hypochlorite. Silica concentrations were well below the 30 mg/L goal in all testing when a 30 mg/L Al EC treatment was applied (Table 4). Oxidation did not affect silica removal.

The existing site process includes prechlorination to oxidize arsenic, iron, and manganese prior to greensand filtration. WT tested oxidation as a pretreatment to simulate site conditions and determine how EC with oxidation affected the removal of arsenic, iron, and manganese with basic filtration instead of greensand. MCL's and SMCL's for measured parameters are provided in Table 1. Aluminum concentrations were below the upper limit for the SMCL. Arsenic was below the MCL in the raw and treated samples. Iron was non-detect and well below the SMCL in both treated samples. Manganese had the best reduction following EC with oxidation but was still above the MCL in the treated sample. Manganese above the MCL was expected without greensand filtration.

Table 2 WaterTectonics analytical test results for City of Longview – raw water collected October 4, 2016.

Parameter	Unit	Raw - Influent	Raw – 30 mg/L Al EC	Raw – 30 mg/L Al EC with oxidation
pH	s.u.	7.19	7.53	7.6
Conductivity	µS/cm	218.8	181	231
Turbidity	NTU	1.83	0.19	0.33
Dissolved Oxygen	mg/L	9.55	7.93	8.62
Silica	mg/L SiO ₂	52.3	20.4	23.3

Table 3 WaterTectonics analytical test results for raw water collected October 25, 2016.

Parameter	Unit	Raw - Influent	Raw – 30 mg/L Al EC	Raw – 30 mg/L Al EC with oxidation
pH	s.u.	7.01	7.59	7.66
Conductivity	µS/cm	226	190.9	213.7
Turbidity	NTU	2.97	0.57	0.31
Dissolved Oxygen	mg/L	7.88	9.73	10.68
Silica	mg/L SiO ₂	53.3	17.2	13.7

Table 4 Third party laboratory analytical test results for raw water collected October 25, 2016.

Parameter	Unit	Raw - Influent	Raw – 30 mg/L Al EC	Raw – 30 mg/L Al EC with oxidation
Aluminum	mg/L	ND (< 0.040)	0.11	0.17
Arsenic	mg/L	0.005	0.0044	ND (< 0.003)
Calcium	mg/L	27	23	25
Iron	mg/L	1.1	ND (< 0.050)	ND (< 0.050)
Magnesium	mg/L	6.6	5.3	5.4
Manganese	mg/L	0.59	0.29	0.18
Silica, Dissolved	mg SiO ₂ /L	51	16	12
Hardness	mg CaCO ₃ /L	94.56	79.23	84.64
Total Alkalinity	mg CaCO ₃ /L	110	82	90

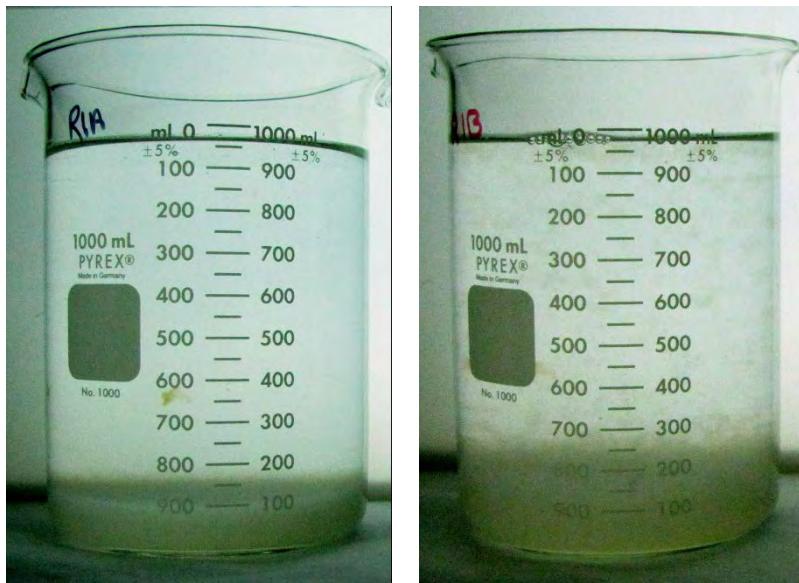


Figure 1 City of Longview Raw Water 30 mg/L Al EC Treatments, without oxidation (left), with oxidation (right).

Filtered Water

The filtered water was used to develop a silica removal curve based off of 3, 9, 15, and 30 mg/L Al EC treatments. The filtered water was selected for this broader effort because of the volume available for testing. Following EC treatment and mixing a large floc formed with increasing volume that settled after floc development (Figure 2). The data indicates that the optimal EC aluminum dose is between 15 and 30 mg/L with or without pH adjustment (Figure 3, Table 5, Table 6).

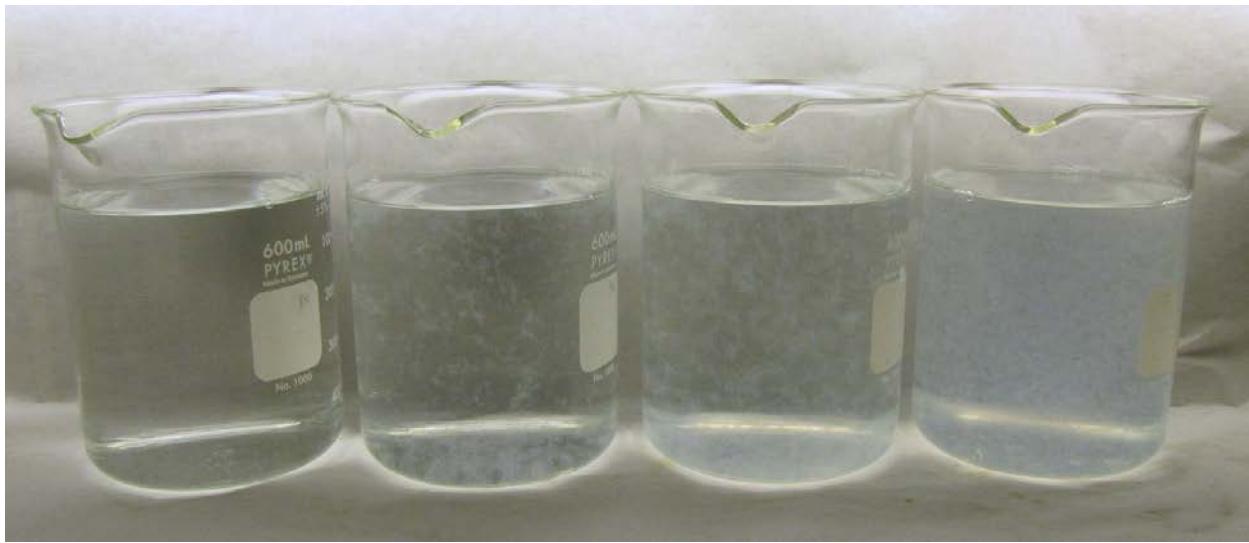


Figure 2 City of Longview Filtered Water Treatments from left to right: 3, 9, 15, and ds30 mg/L Al EC before settling.

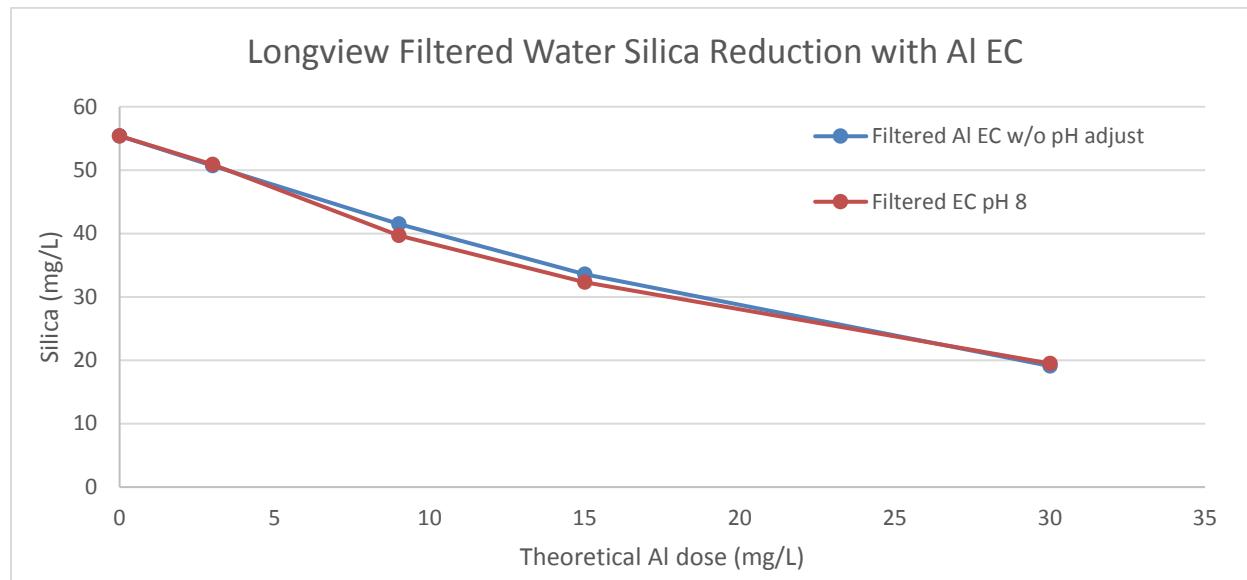


Figure 3 Longview filtered water silica reduction with Aluminum EC.

Table 5 WaterTectonics analytical test results for City of Longview – Filtered water EC treatability without pH adjustment.

Parameter	Unit	Filtered Influent	3 mg/L Al EC	9 mg/L Al EC	15 mg/L Al EC	30 mg/L Al EC
pH	s.u.	7.41	7.68	7.63	7.63	7.47
Conductivity	µS/cm	230	227	221	211.8	201.1
Turbidity	NTU	0.43	0.45	0.45	0.39	0.33
Dissolved Oxygen	mg/L	8.53	9.08	9.12	8.93	7.87
Silica	mg SiO ₂ /L	55.4	50.7	41.5	33.6	19.1

Table 6 WaterTectonics analytical test results for City of Longview – Filtered water EC treatability with pH adjustment to 8 before EC.

Parameter	Unit	Filtered Influent pH adjusted	3 mg/L Al EC	9 mg/L Al EC	15 mg/L Al EC	30 mg/L Al EC
pH	s.u.	8.02	8.01	7.79	7.7	7.57
Conductivity	µS/cm	230	230	223	217.5	205.9
Turbidity	NTU	0.43	1.18	0.87	0.72	0.77
Dissolved Oxygen	mg/L	8.53	8.88	8.78	8.5	7.49
Silica	mg SiO ₂ /L	55.4	50.9	39.7	32.3	19.5

A dosage of 30 mg/L AL EC was selected as the optimal treatment and a 2L sample of water was treated for third party verification of silica removal and additional parameters. A large floc formed that settled (Figure 4). Silica was below 30 mg/L with the 30 mg/L Al EC treatment (Table 7, Table 8). Aluminum was below the upper limit for the SMCL in the treated sample but above the lower value indicating that the coagulation and filtration process may need to be optimized. Arsenic, iron, and manganese were all below the MCLs and SMCLs in the filtered influent and did not increase following EC treatment.

Figure 4 City of Longview Filtered Water 30 mg/L Al EC Treatment.

Table 7 WaterTectonics analytical test results for City of Longview – Filtered water EC treatability testing.

Parameter	Unit	Filtered - Influent	Filtered – 30 mg/L Al EC
pH	s.u.	7.41	7.33
Conductivity	µS/cm	230	206.7
Turbidity	NTU	0.43	0.27
Dissolved Oxygen	mg/L	8.53	10.44
Silica	mg SiO ₂ /L	55.4	19.9

Table 8 Third party laboratory analytical test results for City of Longview - Filtered water EC treatability testing.

Parameter	Unit	Filtered - Influent	Filtered – 30 mg/L Al EC
Aluminum	mg/L	ND (< 0.100)	0.11
Arsenic	mg/L	0.0026	ND (< 0.003)
Calcium	mg/L	27	23
Iron	mg/L	ND (< 0.050)	ND (< 0.050)
Magnesium	mg/L	6	5.2
Manganese	mg/L	ND (< 0.010)	ND (< 0.008)

Parameter	Unit	Filtered - Influent	Filtered – 30 mg/L Al EC
Silica, Dissolved	mg SiO ₂ /L	47	19
Hardness	mg CaCO ₃ /L	92.1	78.82
Total Alkalinity	mg CaCO ₃ /L	110	88

Polyaluminum Chloride Treatments

Samples were treated with Kemira PAX-XL8 polyaluminum chloride (PAC) for comparison to EC treatment with the same theoretical aluminum concentrations as the EC treatments (Figure 5). PAC treatment formed a large floc that settled similarly to the EC treatments (Figure 6). Silica removal required higher theoretical aluminum doses when treated with PAC compared to EC. Initially the filtered sample was used for the PAC testing (Table 9, Table 10). The results showed decreasing pH and minimal silica removal at doses equivalent to Al EC treatment. Slightly better silica removal was observed with pH raised to 8 using sodium chloride after adding the PAC but silica was still well above the 30 mg/L treatment goal with up to 30 mg/L theoretical Al dosing.

Increased PAC dosing with pH adjustment was tested on the fresh raw water sample to determine the concentration that could meet the treatment goal (Table 11). 38 mg/L PAC dosing with pH adjustment met the silica removal goal compared to 20 mg/L Al EC. The pH dropped below 5 with the highest PAC doses.

Conductivity increased with the addition of PAC. A large floc formed with mixing that settled (shown before settling in Figure 6).

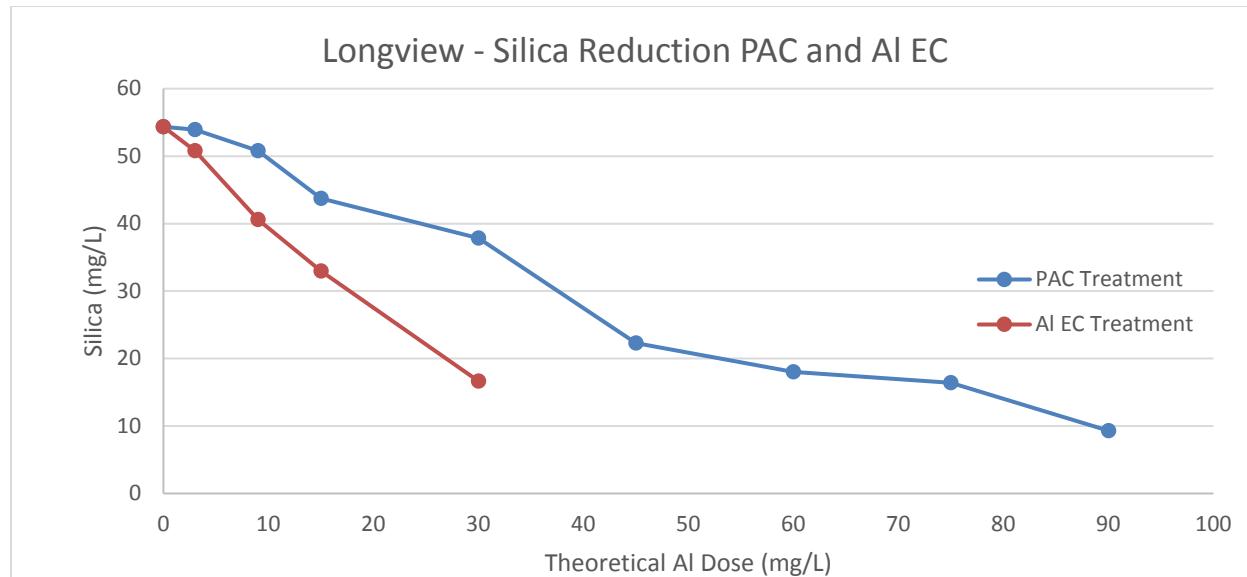


Figure 5 City of Longview average silica removal PAC vs Al EC.

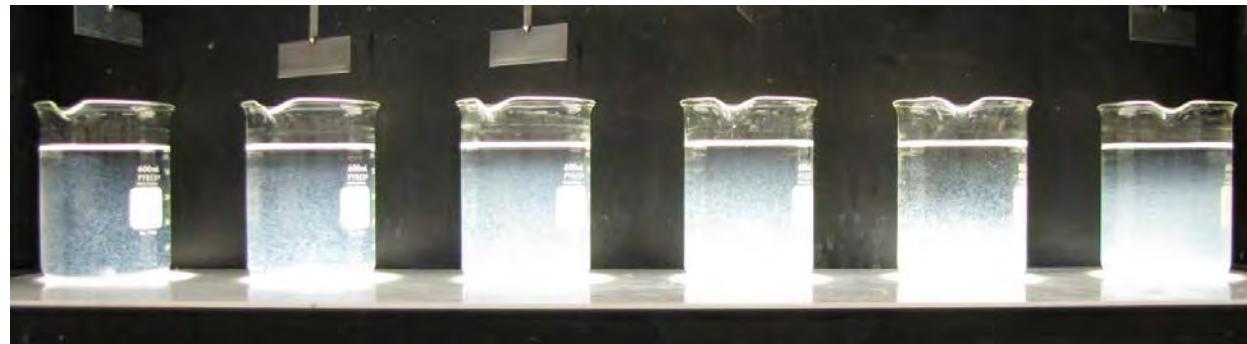


Figure 6 City of Longview - Raw water PAC treatments from left to right: 15, 30, 45, 60, 75, and 90 mg/L Al.

Table 9 WaterTectonics analytical test results for filtered water PAC testing without pH adjustment.

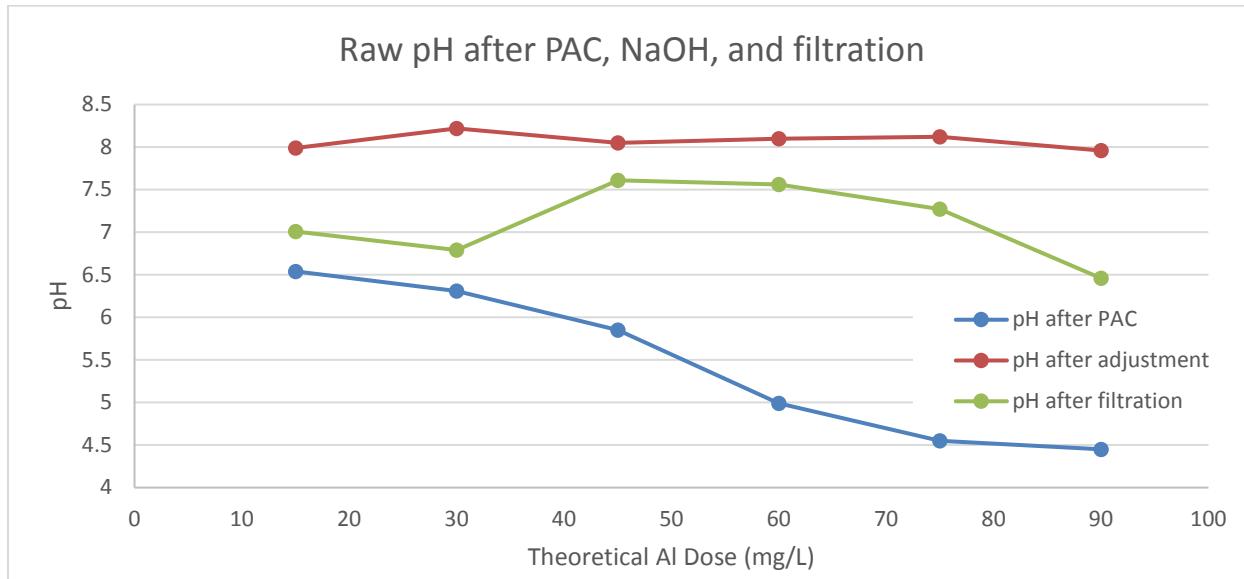
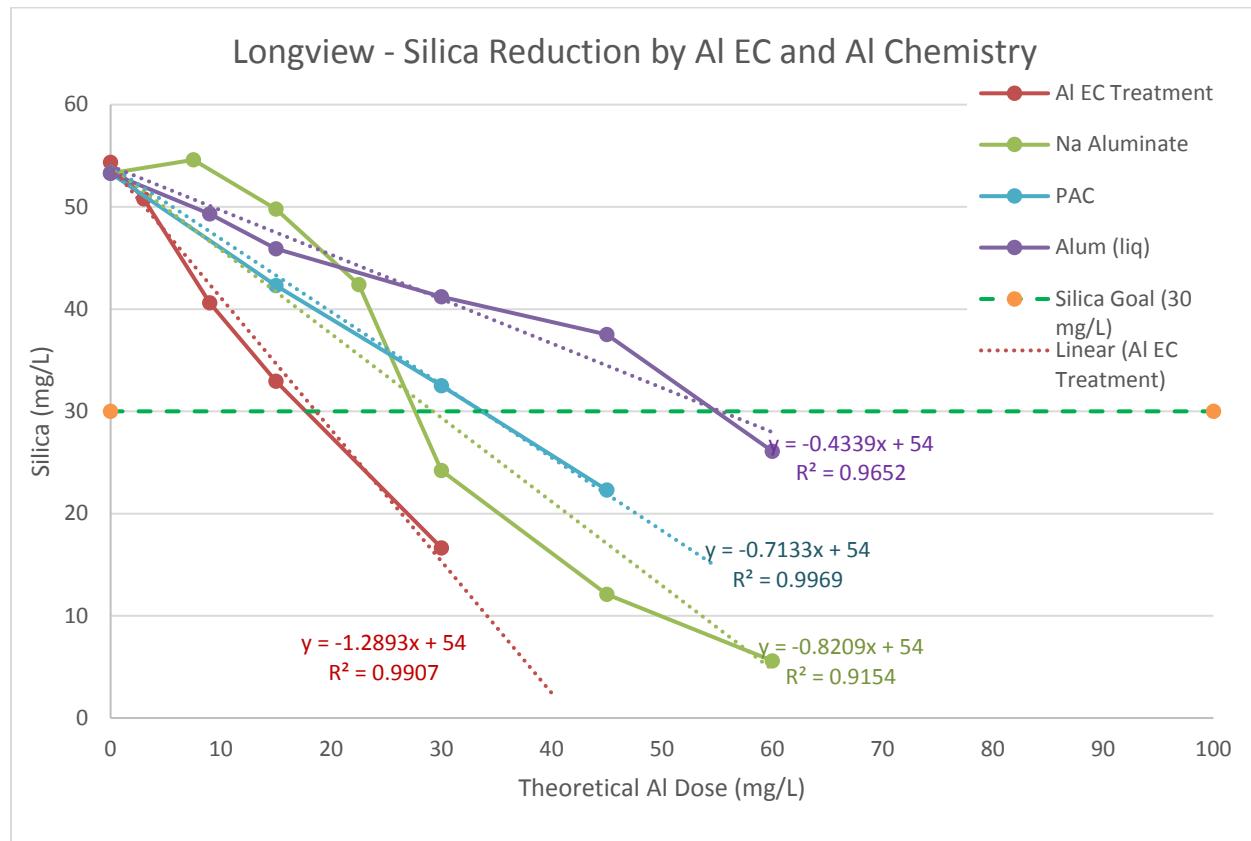

Parameter	Unit	Filtered Influent	3mg/L Al PAC	9 mg/L Al PAC	15 mg/L Al PAC	30 mg/L Al PAC
pH	s.u.	7.41	7.41	7.3	7.17	6.81
Conductivity	µS/cm	230	244	264	284	339
Turbidity	NTU	0.43	1.07	0.52	0.34	0.43
Dissolved Oxygen	mg/L	8.53	8.7	8.72	8.66	8.69
Silica	mg/L SiO ₂	55.4	54.6	51.4	49.7	45.5

Table 10 WaterTectonics analytical test results for filtered water PAC testing with pH adjusted to ~8.

Parameter	Unit	Filtered Influent	3 mg/L Al PAC	9 mg/L Al PAC	15 mg/L Al PAC	30 mg/L Al PAC
pH	s.u.	7.41	7.8	7.84	7.87	7.93
Conductivity	µS/cm	230	255	292	363	450
Turbidity	NTU	0.43	0.48	0.57	0.73	0.5
Dissolved Oxygen	mg/L	8.53	8.77	8.8	8.73	8.75
Silica	mg/L SiO ₂	55.4	53.2	50.2	39.2	35.5


Table 11 WaterTectonics analytical test results for raw water PAC testing with pH adjusted to ~8.

Parameter	Unit	Raw Influent	15 mg/L Al PAC	30 mg/L Al PAC	45 mg/L Al PAC	60 mg/L Al PAC	75 mg/L Al PAC	90 mg/L Al PAC
pH	s.u.	7.01	7.01	6.79	7.61	7.56	7.27	6.46
Conductivity	µS/cm	226	335	432	548	645	769	761
Turbidity	NTU	2.97	0.32	0.28	0.3	0.2	0.29	0.4
Dissolved Oxygen	mg/L	7.88	8.51	8.53	8.54	8.54	8.31	8.53
Silica	mg/L SiO ₂	53.3	42.3	32.5	22.3	18	16.4	9.3

Figure 7 City of Longview raw water pH adjustment with PAC treatments

Operational Cost Estimate

Calculating the required dosage to reduce silica to 30 mg/L, operation costs were estimated EC, PAC, Alum (aluminum sulfate) and Sodium Aluminate. With the exception of EC, all other chemicals tested required pH amendment following dosage, the cost associated to the amendment was included as part of the operating cost. Sodium Hydroxide and Sulfuric Acid were used to adjust the pH to 7.7 for the testing. Linear regression equations were calculated for each data sets and added to the graphical data presented in Figure 8.

Figure 8 - Silica Reduction and Regression Calculations

These treatment dosages were calculated using linear equations as the minimum dosage required to reduce silica to 30 mg/L. The EC costs were estimated at the aluminum dosage of 18.5 mg/L. The Sodium Aluminate treatment costs were calculated at 29.2 mg/L. The PAC treatment costs were estimated at an aluminum dosage of 33.7 mg/L. The Aluminum Sulfate treatment costs were estimated at an aluminum dosage of 55.3 mg/L.

Table 12 Operational Costs for EC Treatment at 18.5 mg/L Aluminum.

Consumables	Units	Units/day	Unit Cost*	Daily Cost	Volume Cost**
Aluminum EC Cells	Each	0.43	\$11,021	\$4,765	\$0.40/Kgal
Power***	kWh	16,283	\$0.070	\$1,134	\$0.09/Kgal
Total Cost	\$			\$10,852	\$0.49/Kgal

* Based on bulk pricing from regional suppliers (based on a WT EC cell design).

** Based on 12 MGD.

*** Estimated on the preliminary cell design and the average power cost over the life of the cell.

Table 13 Operational Costs for Sodium Aluminate Treatment at 29.2 mg/L Aluminum.

Consumables	Units	Units/day	Unit Cost*	Daily Cost	Volume Cost**
Sodium Aluminate (Dry)	lbs	8,891	\$0.57	\$5,103	\$0.43/Kgal
Sulfuric Acid (98% H ₂ SO ₄)	lbs	12,010	\$0.10	\$1,201	\$0.10/Kgal
Total Cost	\$			\$25,245	\$0.53/Kgal

* Based on bulk pricing from regional suppliers.

** Based on 12 MGD.

Table 14 Operational Costs for 50% PAC Treatment at 33.7 mg/L Aluminum.

Consumables	Units	Units/day	Unit Cost*	Daily Cost	Volume Cost**
Polyaluminum Chloride (50% PAC)	lbs	27,082	\$0.31	\$8,395	\$0.70/Kgal
Caustic (50% NaOH)	lbs	5,254	\$0.15	\$788	\$0.07/Kgal
Total Cost	\$			\$25,245	\$0.77/Kgal

* Based on bulk pricing from regional suppliers.

** Based on 12 MGD.

Table 15 Operational Costs for Aluminum Sulfate (Alum) Treatment at 55.3 mg/L Aluminum.

Consumables	Units	Units/day	Unit Cost*	Daily Cost	Volume Cost**
Aluminum Sulfate (dry Alum)	lbs	147,692	\$0.07	\$10,741	\$0.90/Kgal
Caustic (50% NaOH)	lbs	34,528	\$0.15	\$5,179	\$0.43/Kgal
Total Cost	\$			\$25,245	\$1.33/Kgal

* Based on bulk pricing from regional suppliers.

** Based on 12 MGD.

Conclusion

Both EC, sodium aluminate, aluminum sulfate and PAC were effective in reducing silica in a coagulation/flocculation process. The dosage of aluminum is lower for the EC process and it did not affect the pH. Aluminum sulfate and PAC coagulation consumes alkalinity and lowers pH. The aluminum sulfate and PAC processes will require adjustment of the pH with a caustic chemical to raise the pH. The sodium aluminate increases pH and will require pH adjustment with an acid. Since PAC is a formulated chemical that requires the addition of chloride, the subsequent impact on the water quality as a result of the increased TDS from the chloride should be studied further. The EC 3rd party Aluminum data was below the upper limit for the SMCL in the treated sample but above the lower value indicating that the coagulation and filtration process may need to be optimized.

The results showed that silica reduction was equally effective in both the raw and treated water samples. Treatment of the raw water is most likely preferable since an oxidation and coagulation process will help reduce the iron and manganese and filtration will be required after the floc has been separated. Evaluation of additional benefits from treatment such as further reduction of heavy metals and/or bacteria was not a part of the scope for this feasibility report, but certainly should be considered in any future testing. Academic reports and WT's testing has shown the EC process to produce a 3-4 log reduction in bacteria and viruses. If piloting is conducted, this reduction should be studied and quantified and as a result there may be an economic benefit of lower chlorination dosages.

The operational costs were estimated at the theoretical values based on the laboratory collected data. Based on this data, EC shows a cost and operational advantages over the aluminum-based chemicals tested. EC estimated operational cost are lower than the sodium aluminate chemical option, but the calculated operational costs are close enough that our recommendation is that both approaches are tested in a scaled side-by-side field evaluation.

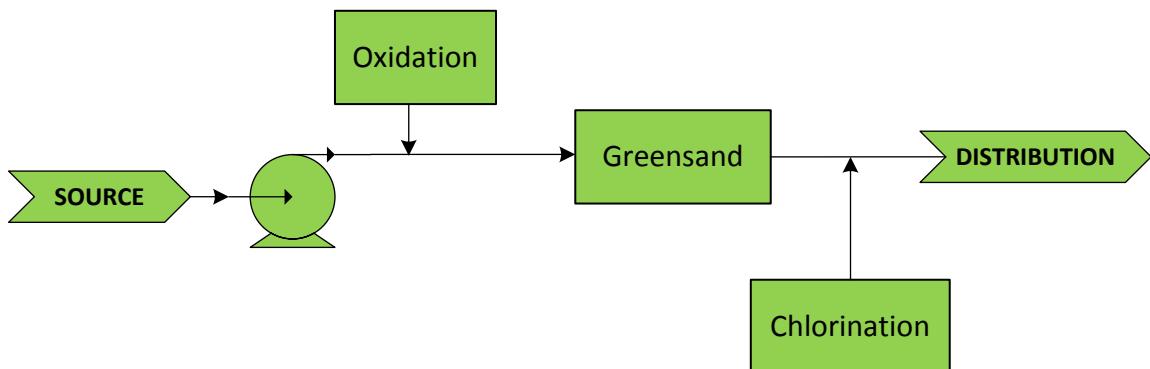
References

Stewart, T., Nyman, M., & Altman, S. J. (2011). *Coagulation Chemistries for Silica Removal from Cooling Tower Water* (No. SAND2011-0800). Sandia National Laboratories.

Appendix A – Analytical Test Methods and Detection Limits

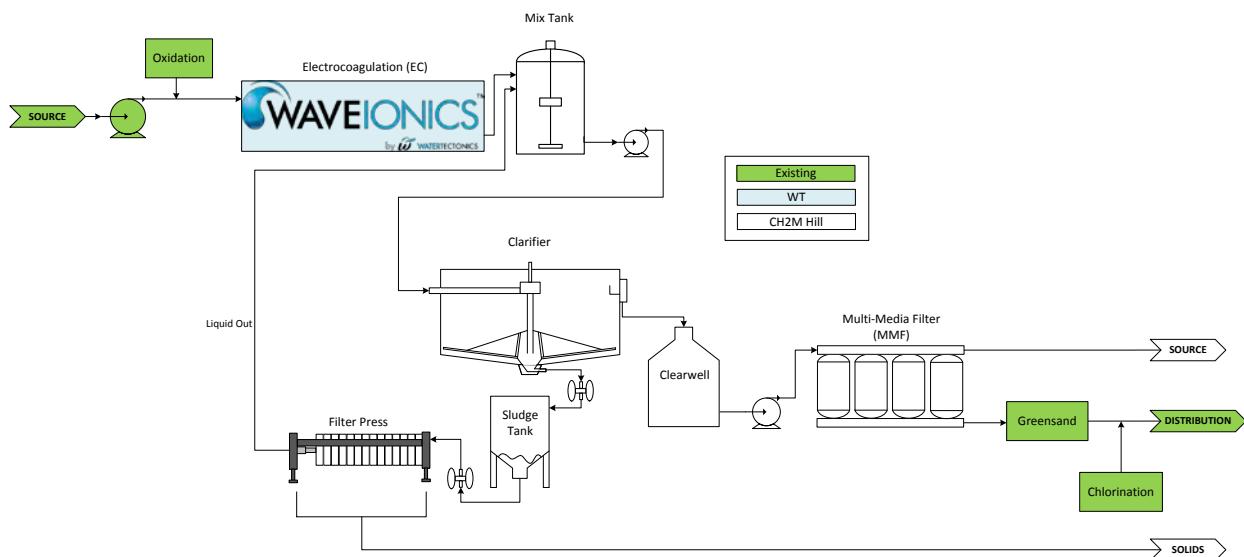
Table A Water Tectonics analytical test methods and detection limits.

Parameter	Unit	Method	Detection Limit
pH	standard units	Hach HQ40d meter	N/A
Conductivity	µS/cm	Hach HQ40d meter	N/A
Turbidity	NTU	Hach 2100P meter	0.01
Dissolved Oxygen	mg/L	Hach HQ40d meter	0.1
Silica	mg/L as SiO ₂	Hach Method 8185	1


Table B Third party laboratory test methods and detection limits.

Parameter	Unit	Method	Detection Limit
Aluminum	mg/L	EPA 200.8	0.040
Alkalinity	mg/L	SM 2320B	2.0 – 3.0
Arsenic	mg/L	EPA 200.8	0.003
Calcium	mg/L	EPA 6010C	1
Iron	mg/L	EPA 6010C	0.050
Magnesium	mg/L	EPA 6010C	1
Manganese	mg/L	EPA 200.8	0.008
Silica, Dissolved	mg/L as SiO ₂	EPA 200.7	2.1

Appendix B – Budgetary Capital Estimate


Capital Budgetary Estimate

At the customer's request, WaterTectonics has developed a budgetary estimate for the capital equipment required for this EC and chemical process solutions developed in the treatability study. The existing process currently used for treatment of the well water is shown in Figure 9.

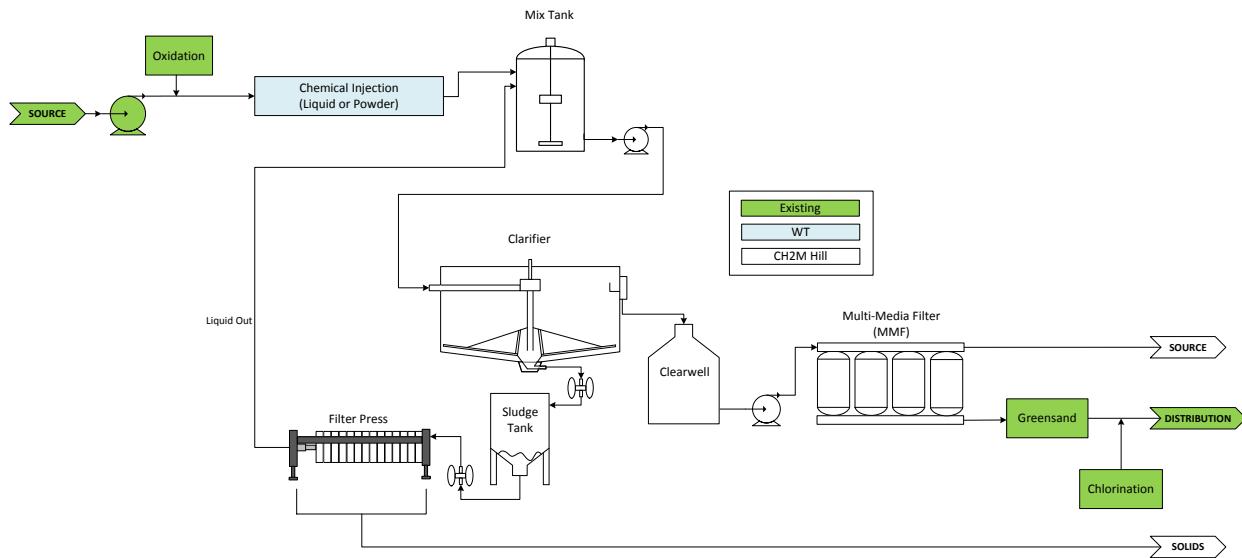


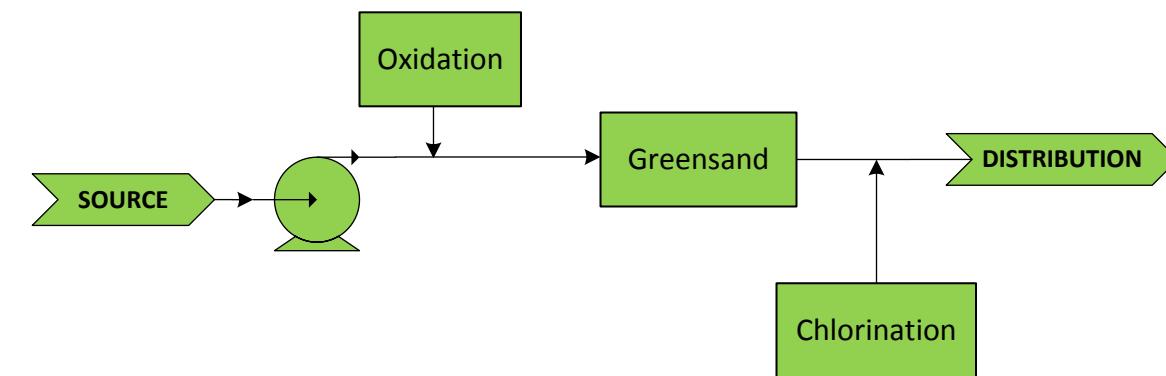
Figure 9 - Current Groundwater Treatment Process

To remove the silica in the groundwater using either, EC or an aluminum based chemical, coagulation and flocculation will occur and thus, supporting clarification and filtration is recommended. For the purposes of this budgetary estimate the follow process flow was developed for the EC and chemical solutions.

Figure 10 - EC Process Flow Diagram

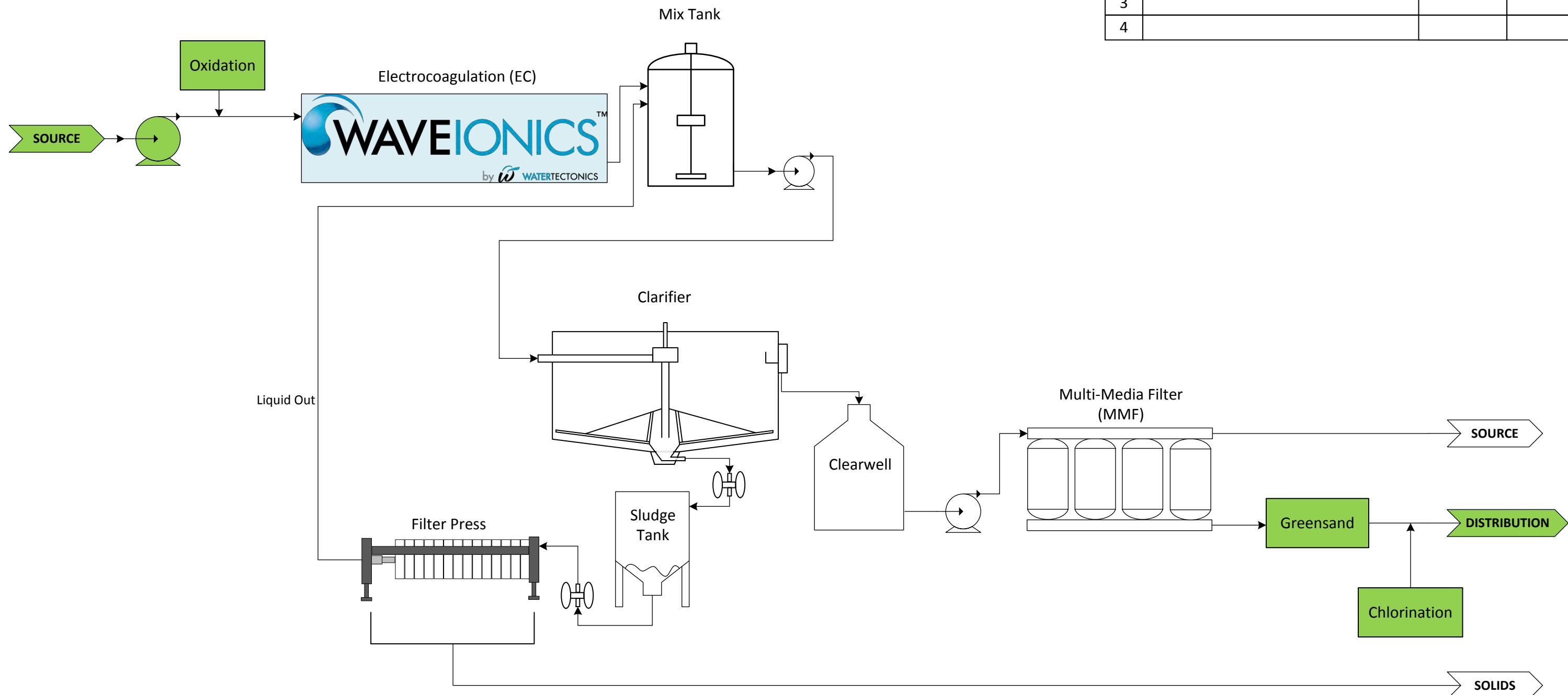
Figure 11 - Chemical Process Flow Diagram

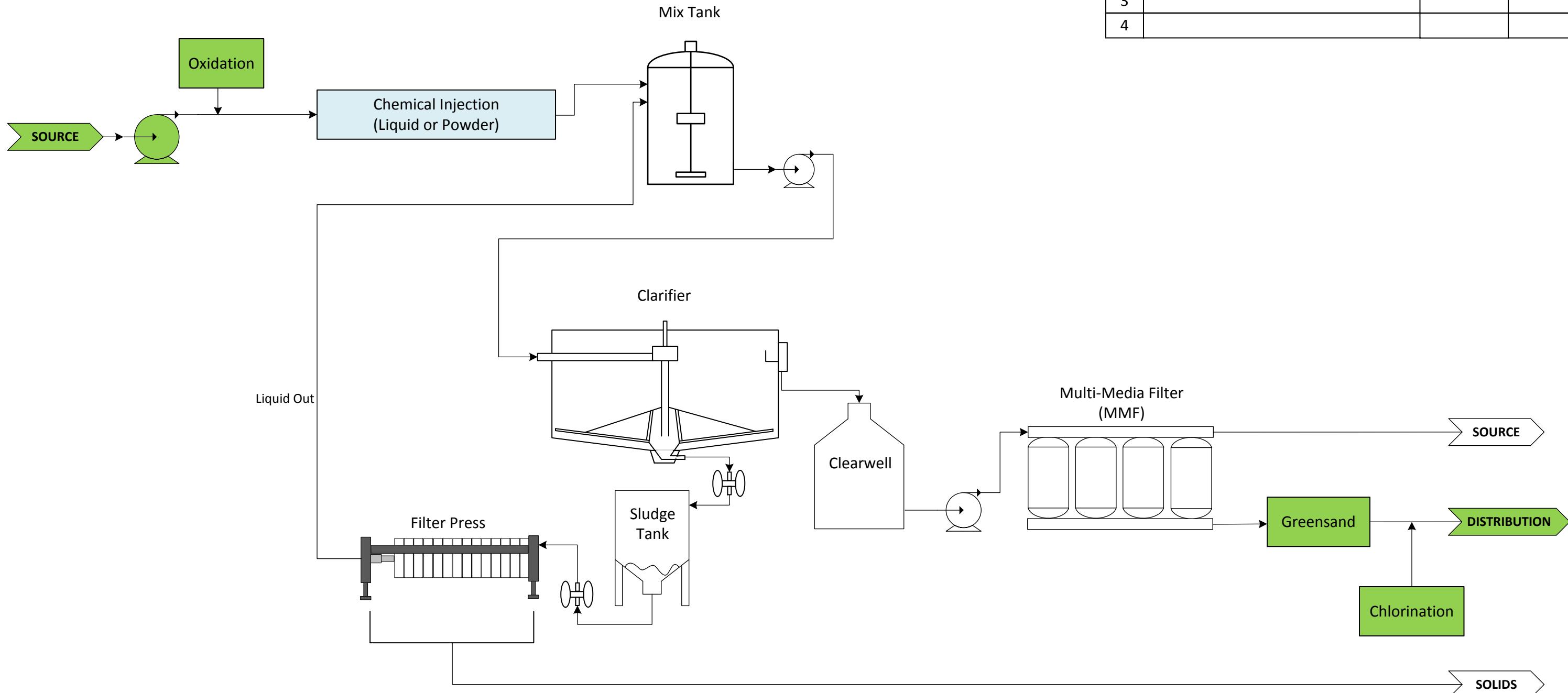
For budgetary purposes, it is assumed that the process component (specifically the mix tank, clarifier, clearwell, multimedia filters, sludge tank and filter press) will be the same for either proposed process solutions. As a result, the primary difference is between the capital cost for an EC system versus a chemical dosing and storage system. Based on our experience and past projects, our proposed budgetary pricing for a process flow at 12MGD is outlined in the table below.


Table 16 Capital Cost Estimate.

Description	Capital Estimate Low	Capital Estimate High	Depreciated Cost of Capital (High)
Option 1 - EC Equipment 12 EC Cells (10 online, 2 Redundant Power supplies (1 per cell)	\$2,100,000	\$3,200,000	\$160,000/year \$0.04/Kgal
Option 2 - Chemical Equipment Off-loading Liquid Storage 20,000 gallons Dry Storage, 80,000 lbs Chemical make-down system Redundant Chemical dosing systems	\$1,500,000	\$2,300,000	\$115,000/year \$0.03/Kgal
Process Equipment Flocculation Clarification Filtration Dewatering	\$6,000,000	\$10,000,000	\$500,000/year \$0.11/Kgal

Note: Depreciation cost were evaluated on 20year, straight line method, 0% APR.

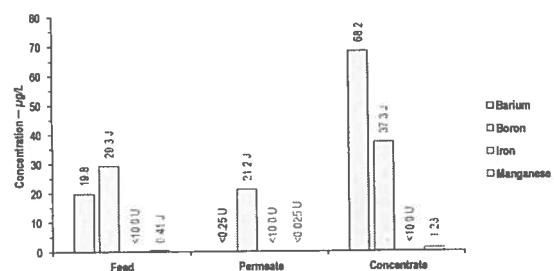

Existing
Proposed


REVISIONS			
REV	DESCRIPTION	DATE	INITIALS
1	Original	11/28/16	JEA
2			
3			
4			

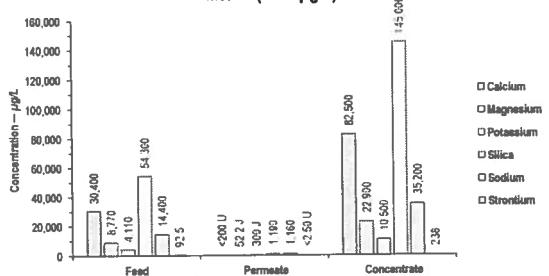
Existing
WT
CH2M Hill

REVISIONS			
REV	DESCRIPTION	DATE	INITIALS
1	Original	11/28/16	JEA
2			
3			
4			

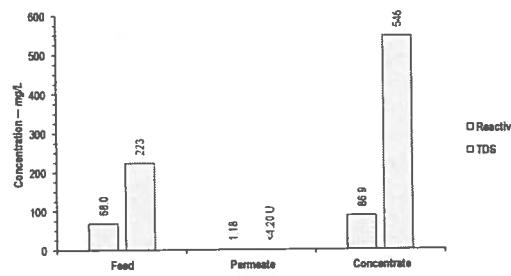
Attachment B

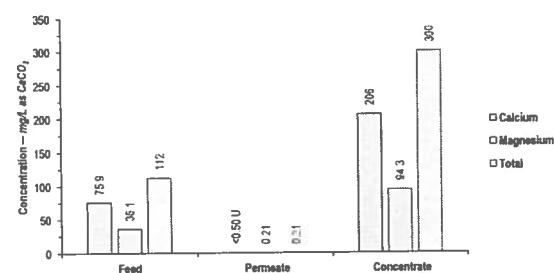

Sample Information				
Project Name	Longview RO			
Project Number	156197.00.JT			
Sample Description	Mint Farm Groundwater			
RO Stream	RO Feed — 61% Recovery	RO Permeate — 61% Recovery	RO Concentrate — 61% Recovery	
Sample Name	LV-RO Feed	LV-RO Perm	LV-RO Conc.	
Sample Collection Date	11/29/2017	1/10/2017	1/10/2017	
Bulk Sample ID	Q362002	Q362002	Q362002	
Characterization Lab ID	R104501	R104502	R104503	
Total Metals Analysis				
Barium	µg/L	19.8	<0.25 U	68.2
Boron	µg/L	29.3 J	21.2 J	37.3 J
Calcium	µg/L	30,400	<200 U	82,500
Iron	µg/L	<10.0 U	<10.0 U	<10.0 U
Magnesium	µg/L	8,770	52.2 J	22,900
Manganese	µg/L	0.41 J	<0.025 U	1.23
Potassium	µg/L	4,110	300 J	10,500
Silica	µg/L	54,300	1,190	145,000
Sodium	µg/L	14,400	1,160	35,200
Strontium	µg/L	92.5	<2.50 U	238
Hardness, Ca	mg/L as CaCO ₃	75.9	<0.50 U	206
Hardness, Mg	mg/L as CaCO ₃	36.1	0.21	94.3
Hardness, total	mg/L as CaCO ₃	112	0.21	300
General Chemistry Analysis				
Alkalinity, total	mg/L as CaCO ₃	102	<5.00 U	251
Alkalinity, bicarbonate	mg/L as CaCO ₃	102	<5.00 U	251
pH	Units	7.5	7.9	7.0
Turbidity	NTU	0.31	0.15	0.49
Conductivity	µS/cm	305	8.16	749
Total Dissolved Solids	mg/L	223	<4.20 U	546
Ammonia	mg/L-N	<0.10 U	<0.10 U	<0.10 U
Nitrate	mg/L-N	0.0098 J	<0.0028 U	0.014
Nitrite	mg/L-N	<0.0030 U	<0.0030 U	<0.0030 U
TKN	mg/L-N	0.26	0.24	0.79
Chloride	mg/L	32.2	0.89	84.8
Sulfate	mg/L	1.18	0.72	3.04
Fluoride	mg/L	0.19 J	0.065 J	0.51
TOC	mg/L	1.04	<0.20 U	2.56
Reactive Silica	mg/L	68.0	1.18	86.9
Treatability Analysis				
Hardness, Ca	mg/L as CaCO ₃	80.0	1.00	212
Hardness, Mg	mg/L as CaCO ₃	28.0	<1.00 U	76
Hardness, total	mg/L as CaCO ₃	108	1.00	288
Calcium	mg/L	32.0	0.40	84.9
Magnesium	mg/L	6.80	<0.24 U	18.5
Chlorine Demand	mg/L as Cl ₂			

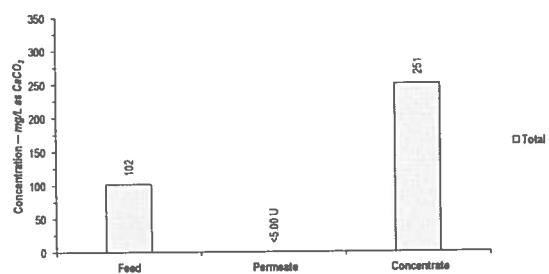
J = Estimated value below reporting limit.

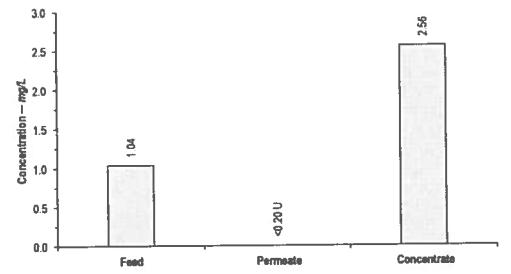

E = Estimated value above calibration range.

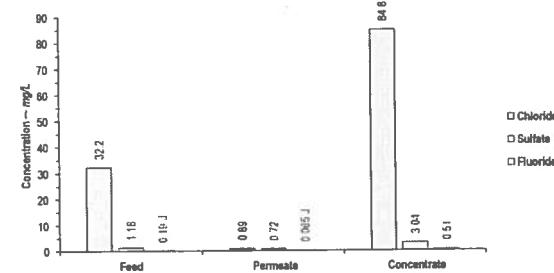
U = Not detected at specified detection limit.

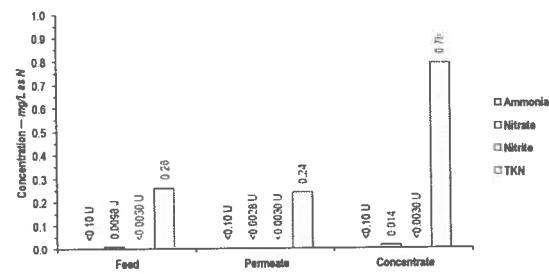

Trace Metals (<100 µg/L)

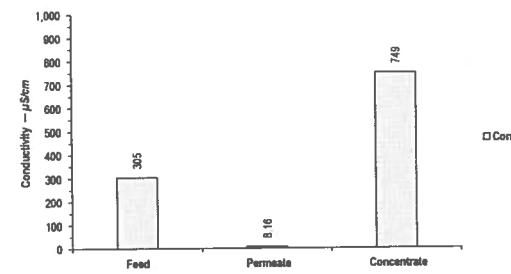

Metals (>100 µg/L)


Reactive Silica & TDS


Hardness


Alkalinity


Organics


Major Anions

Nitrogen

Conductivity

ch2m

Manufacturer	Model	Area
Hydranautics	ESPA2-2540	20 sq. ft

Date: 1/10/17
NaCl Solution: 1,500 mg/L

Model No. ESPA2-2540
Serial No. 11898945

Sample Name	Lab ID	Time	Feed Pressure	Feed Temperature	Permeate Flow	Concentrate Flow	Feed Conductivity	Concentrate Conductivity	Permeate Conductivity	Feed pH	Concentrate pH	Permeate pH	Temperature	Correction Factor	Recovery	Conductivity Feed Brine	Osmotic Pressure	Net Driving Pressure	Specific Flux	Salt Rejection
NaCl Testing																				
-	-	11:00	106	22.4	12.5	1.18	2,990	3,930	32.4	n/a	n/a	n/a	1.08	15%	3,240	19.4	86.4	0.19	99.8%	
-	-	11:15	105	23.4	12.5	1.18	2,970	3,380	30.7	n/a	n/a	n/a	1.05	15%	3,218	19.3	85.7	0.18	99.8%	
-	-	11:30	104	24.3	12.5	1.18	2,980	3,400	30.2	n/a	n/a	n/a	1.02	15%	3,229	19.4	84.2	0.18	99.8%	
-	-	11:45	101	25.2	12.5	1.18	2,970	3,420	30.2	n/a	n/a	n/a	0.99	15%	3,218	19.3	81.5	0.18	99.8%	
Rejection Test 15% Recovery																				
-	-	13:55	95.1	21.6	12.5	1.18	306	349	5.42	n/a	n/a	n/a	1.11	15%	332	1.99	93.1	0.18	99.6%	
-	-	14:10	93.0	21.9	12.5	1.18	307	351	5.19	n/a	n/a	n/a	1.10	15%	333	2.00	91.0	0.18	99.6%	
-	-	14:25	92.5	22.3	12.5	1.18	309	352	5.08	n/a	n/a	n/a	1.09	15%	335	2.01	90.5	0.18	99.6%	
-	-	14:40	92.3	22.6	12.5	1.18	308	351	4.99	n/a	n/a	n/a	1.08	15%	334	2.00	90.3	0.18	99.6%	
Rejection Test 61% Recovery																				
-	-	15:00	85.8	23.1	12.5	0.14	307	748	8.22	n/a	n/a	n/a	1.06	61%	472	2.83	83.0	0.19	99.6%	
-	-	15:15	85.0	23.4	12.5	0.14	304	748	8.49	n/a	n/a	n/a	1.05	61%	468	2.81	82.2	0.19	99.6%	
-	-	15:30	85.0	23.8	12.5	0.14	304	750	8.12	n/a	n/a	n/a	1.04	61%	468	2.81	82.2	0.19	99.6%	
LV-RO	R104501,02,03	15:45	84.5	24.0	12.5	0.14	305	749	8.16	7.5	7.9	7.0	1.03	61%	469	2.82	81.7	0.19	99.6%	

ch2m

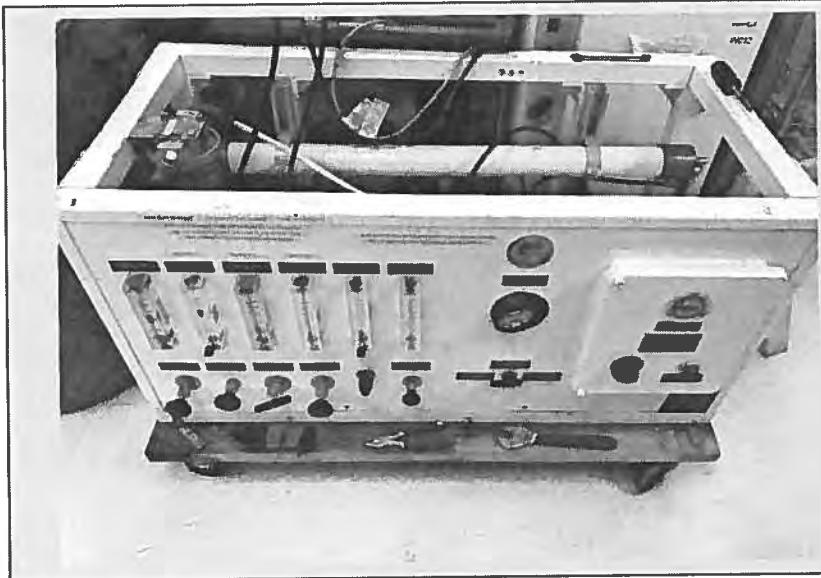


Photo 1: Front view of the RO Skid used in testing.

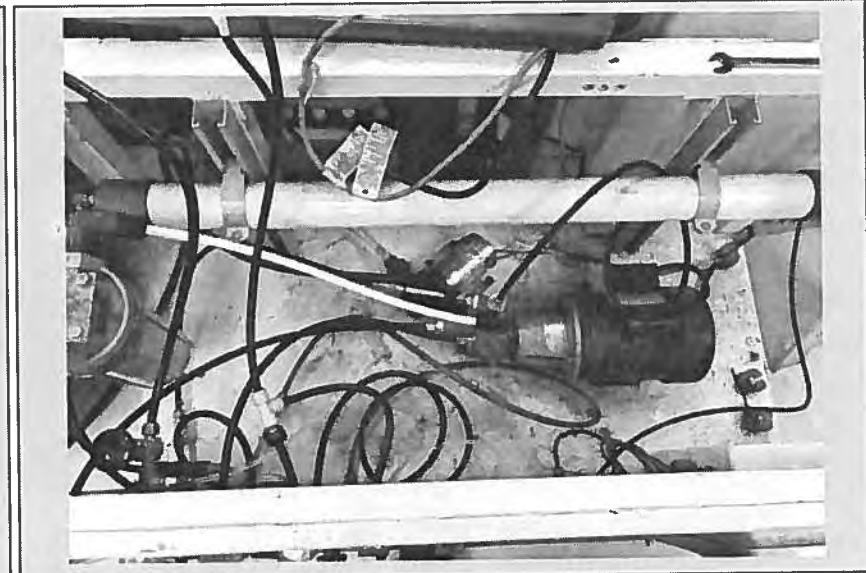


Photo 2: Inside view of the RO Skid used in testing including RO element pressure vessel, feed pump, booster pump and pre-filter.

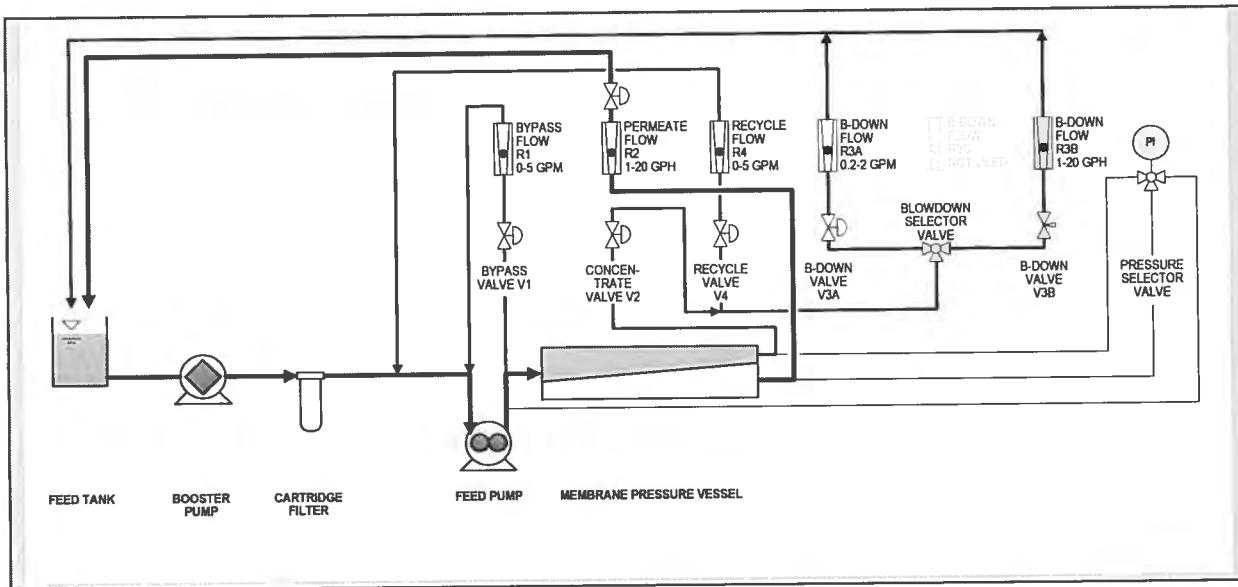


Photo 3: Schematic of the RO Skid used in testing.

Gravity Pipe - Outfall**Is this Pipeline Segment Included in the Project? Yes**

Cost Estimate Quantity Units (English or Metric)?

English

User Inputs:	Value	Symbol	Comment	Red Flags	Comment	User Comments
Segment Description:	Outfall					
1.) Is this segment Tunnled or Open Cut?	Open Cut					
2.) Input Segment Length (feet)	2,000	L	USER INPUT			
3.) Pipe 1:						
Input Type of Pipe Material	PVC SDR 35		USER INPUT			
Input Inside Pipe Diameter (inches)	34	P1	<i>Note: Data Range is 6" - 34"</i>			
Input Pipe Wall Thickness (inches per each wall)	1.69					
Input Pipe Fitting Allowance (Low, Medium, High)	Low		<i>Low = approximately 8 fittings per mile</i> <i>Medium = approximately 12 fittings per mile</i> <i>High = approximately 20 fittings per mile</i>			
4.) Is there a parallel Pipe 2 ?	No					
5.) Is there a parallel Pipe 3 ?	No					
6.) Input Pipe Cover Depth (feet)	6	D				
7.) Input Space Between Trench Wall & Pipe (inches)	18	S1	Suggested Minimum Space: 1"			
8.) Input Space Between Multiple Pipes (inches)	12	S2				
9.) Are the Pipes Concrete Encased?	No		<i>If "Yes", the model does concrete encasement for the entire length of the segment</i>			
10.) Input Pipe Bedding Thickness (inches)	6	BT	Suggested Minimum Thickness: 6"			
11.) Input Thickness of Pipe Zone Above Pipe (inches)	12	PZAP	Suggested Minimum Thickness: 12"			
Trench Information:						
Trench Depth (ft)	7.75	TD				
Straight Wall Trench Depth (ft)	4.06	SWTD				
Trench Width at Bottom of Trench (ft)	5.25	W1				
Trench Width at Top of Trench (ft)	12.75	W2				
Is Trench Box Used?	No					
Is Wood Shoring Used?	No					
Is Wood Sheet Piling Used?	No					
12.) Is Wood Shoring Required for SWTD < 4'?	No		<i>TRENCH BOX is used for Straight Wall Trench Depths (SWTD) greater than 4' and less than 8' WOOD SHORING is used for SWTD greater than or equal to 8' and less than or equal to 20'. WOOD SHEET PILING is used for SWTD greater than 20'</i>			
13.) Vertical Depth Dimension (feet)	4	SWTD	<i>TRENCH BOX is used for Straight Wall Trench Depths (SWTD) greater than 4' and less than 8' WOOD SHORING is used for SWTD greater than or equal to 8' and less than or equal to 20'. WOOD SHEET PILING is used for SWTD greater than 20'</i>			
14.) Side Slope (Horizontal In Vertical)	1.00	SS				
15.) Bedding Material	Imported					
16.) Pipe Zone Backfill Material	Native					
17.) Trench Zone Backfill Material	Native					
18.) Site Condition Factors	Low Urban		<i>Assumes 3" asphalt pavement, low level of traffic control and low level of utility interference.</i>			
19.) Trench Dewatering	User Specific		<i>For trench dewatering (Ground Freezing, Well Points, Sheet Pits & interior Well Points), contact a CH2M HILL professional estimator.</i>			
20.) Supplemental Factors	None					
21.) Appurtenances (Note to User: Review the appurtenance drawings):	Quantity	Size (inches)	Lump Sum Cost per Each (includes installation)	Description		
Manholes:						
Small - 48"						
Medium - 60"						
Large - 72" and Larger	4					
Drop Manhole						
Service Laterals:						
Service Lateral						
Catch Basins:						
Gutter Style						
Open Area (Parking Lot)						
Other Facilities:						
User Defined 1						
User Defined 2						
User Defined 3						
User Defined 4						
User Defined 5						

Unit Cost Database:					
Item	Unit	\$/Unit	Reference	Data Range	
Pipe 1:					
Hobas Pipe Material Cost	LF	\$45.09		Note: Data Range is 6" - 100"	
Viton Material Pipe Cost	LF	\$54.47		Note: Data Range is 21" - 54"	
PVC - SDR 35 Total Installed Pipe Cost	LF	\$30.58		Note: Data Range is 6" - 24"	
RCP - ASTM C78 Total Installed Pipe Cost	LF	\$74.74		Note: Data Range is 6" - 108"	
HDPE - Hunter Blue Seal Pipe Material Cost	LF	\$34.19		Note: Data Range is 4" - 60"	
Vitrified Clay Pipe Material Cost	LF	\$78.86		Note: Data Range is 6" - 42"	
PVC Labor Cost	LF	\$8.11		Note: Data Range is 6" - 24"	
RCP Labor Cost	LF	\$28.35		Note: Data Range is 6" - 108"	
Hobas Labor Cost	LF	\$22.29			
User Defined: (Be sure to include an installation factor in User Defined formula)					
Pipe System #1 [for example: = (21.443 * pipe 1 diameter) - 13.184]	LF		Pipe 1 Diameter:>>>>	24	Be sure to include an installation factor
Pipe System #2 [for example: = (21.443 * pipe 1 diameter) - 13.184]	LF				
Pipe System #3 [for example: = (21.443 * pipe 1 diameter) - 13.184]	LF				
Pipe System #4 [for example: = (21.443 * pipe 1 diameter) - 13.184]	LF				
Pipe 2:					
Hobas Pipe Material Cost	LF	\$438.95		Note: Data Range is 6" - 100"	
Viton Material Pipe Cost	LF	\$33.44		Note: Data Range is 21" - 54"	
PVC - SDR 35 Total Installed Pipe Cost	LF	\$14.80		Note: Data Range is 6" - 24"	
RCP - ASTM C78 Total Installed Pipe Cost	LF	\$7.35		Note: Data Range is 6" - 108"	
HDPE - Hunter Blue Seal Pipe Material Cost	LF	\$7.45		Note: Data Range is 4" - 60"	
Vitrified Clay Pipe Material Cost	LF	\$18.30		Note: Data Range is 6" - 42"	
PVC Labor Cost	LF	\$4.09		Note: Data Range is 6" - 24"	
RCP Labor Cost	LF	\$9.95		Note: Data Range is 6" - 108"	
Hobas Labor Cost	LF	\$4.09			
User Defined: (Be sure to include an installation factor in User Defined formula)					
Pipe System #1 [for example: = (21.443 * pipe 2 diameter) - 13.184]	LF		Pipe 2 Diameter:>>>>	12	Be sure to include an installation factor
Pipe System #2 [for example: = (21.443 * pipe 2 diameter) - 13.184]	LF				
Pipe System #3 [for example: = (21.443 * pipe 2 diameter) - 13.184]	LF				
Pipe System #4 [for example: = (21.443 * pipe 2 diameter) - 13.184]	LF				
Pipe 3:					
Hobas Pipe Material Cost	LF	\$3.07		Note: Data Range is 6" - 100"	
Viton Material Pipe Cost	LF	\$0.41		Note: Data Range is 21" - 54"	
PVC - SDR 35 Total Installed Pipe Cost	LF	\$22.74		Note: Data Range is 6" - 24"	
RCP - ASTM C78 Total Installed Pipe Cost	LF	\$33.74		Note: Data Range is 6" - 108"	
HDPE - Hunter Blue Seal Pipe Material Cost	LF	\$20.82		Note: Data Range is 4" - 60"	
Vitrified Clay Pipe Material Cost	LF	\$48.49		Note: Data Range is 6" - 42"	
PVC Labor Cost	LF	\$8.40		Note: Data Range is 6" - 24"	
RCP Labor Cost	LF	\$19.16		Note: Data Range is 6" - 108"	
Hobas Labor Cost	LF	\$8.40			
User Defined: (Be sure to include an installation factor in User Defined formula)					
Pipe System #1 [for example: = (21.443 * pipe 3 diameter) - 13.184]	LF		Pipe 3 Diameter:>>>>	18	Be sure to include an installation factor
Pipe System #2 [for example: = (21.443 * pipe 3 diameter) - 13.184]	LF				
Pipe System #3 [for example: = (21.443 * pipe 3 diameter) - 13.184]	LF				
Pipe System #4 [for example: = (21.443 * pipe 3 diameter) - 13.184]	LF				
Excavating, Chain Trencher, 6" wide, 60' deep, including backfill and compaction	LF	\$1.07	RSM 02315-620-2300		
Trench Excavation (4-6 foot Deep) 1/2 cy hyd backhoe	CY	\$7.18	RSM 02315-610-0050	150 cyl/day	
Trench Excavation (4-6 foot Deep) 3/4 cy hyd backhoe	CY	\$5.71	RSM 02315-610-0090	200cyl/day	
Trench Excavation (6-10 foot Deep) 1 cy hyd backhoe	CY	\$6.31	RSM 02315-610-0500	225 cyl/day	
Trench Excavation (10-14 foot Deep) 1 cy hyd backhoe	CY	\$4.29	RSM 02315-610-0910	300 cyl/day	
Trench Excavation (14-20 foot Deep) 1-1/2 cy hyd backhoe	CY	\$4.71	RSM 02315-610-1010	400 cyl/day	
Trench Excavation (20-24 foot Deep) 2-1/2 cy hyd backhoe	CY	\$25.59	RSM 02315-610-1344	785 cyl/day	
Trench Excavation with Trench Box (6-10 foot Deep), 3/4 cy excavator	CY	\$7.39	RSM 02315-610-1362	212 cyl/day	
Trench Excavation with Trench Box (10-14 foot Deep), 1 cy excavator	CY	\$3.00	RSM 02315-610-1375	338 cyl/day	
Trench Excavation with Trench Box (14-20 foot Deep), 1-1/2 cy excavator	CY	\$4.25	RSM 02315-610-1382	451 cyl/day	
Trench Excavation with Trench Box (20-24 foot Deep), 2-1/2 cy excavator	CY	\$3.82	RSM 02315-610-1398	719 cyl/day	
Bedding - Native	CY	\$20.29	Dave Hedgin (Includes Place & Compact)		
Bedding - Imported	CY	\$43.70	Dave Hedgin (Includes Material and Place & Compact)		
Bedding - CDF	CY	\$80.59	Dave Hedgin (Includes Material and Place & Compact)		
Pipe Zone Backfill - Native	CY	\$28.38	Dave Hedgin (Includes Place & Compact)		
Pipe Zone Backfill - Imported	CY	\$48.78	Dave Hedgin (Includes Material and Place & Compact)		
Pipe Zone Backfill - CDF	CY	\$90.53	Dave Hedgin (Includes Material and Place & Compact)		
Reinforced Concrete Pipe Encasement	CY	\$402.25			
Trench Zone Backfill - Native	CY	\$10.81	Dave Hedgin (Includes Place & Compact)		
Trench Zone Backfill - Imported	CY	\$29.34	Dave Hedgin (Includes Material and Place & Compact)		
Trench Zone Backfill - CDF	CY	\$90.53	Dave Hedgin (Includes Material and Place & Compact)		
Haul Excavated Material (12cy dump truck, 2 miles round trip)	CY	\$5.24	RSM 02315-480-0400		
Haul Excavated Material (20cy dump truck, 5 miles round trip)	CY	\$6.05	RSM 02315-490-1245		
Dewatering:					
Trench Dewatering	LF	\$5.67	Custom Spec		
Shoring:					
Wood Shoring (for SWTD < 8' and ≤ 20')	SF	\$1.03	RSM 02315-610-1391		
Wood Sheet Piling (for SWTD greater than 20')	SF	\$11.30	RSM 02250-400-4500		
Micro Tunnelling:					
Micro tunneling, 24"-48" OD	LF	\$938.58	RSM 02441-400-0100		
Micro tunneling, 30" OD, Adverse Conditions	LF	\$1,407.87	RSM 02441-4000-0110		
Micro tunneling Mobilization	LF	\$174,012.94	RSM 02441-400-1100		
Horizontal Boring:					
Horizontal Boring, Roadwork, 1/2" thick wall, 24" diameter casing	LF	\$322.82	RSM 02441-300-0100		
Horizontal Boring, Roadwork, 1/2" thick wall, 36" diameter casing	LF	\$330.20	RSM 02441-300-0200		
Horizontal Boring, Roadwork, 1/2" thick wall, 48" diameter casing	LF	\$334.44	RSM 02441-300-0300		
Horizontal Boring, Railroad, 24" diameter	LF	\$395.67	RSM 02441-300-0500		
Horizontal Boring, Railroad, 36" diameter	LF	\$478.33	RSM 02441-300-0600		
Horizontal Boring, Railroad, 48" diameter	LF	\$667.44	RSM 02441-300-0700		
Horizontal Boring, Jacking Pits	EA	\$19,552.85	RSM 02445-300-1100		
Appurtenances:					

Manholes:						
Small - 48"	EA	\$8,852.69				
Medium - 60"	EA	\$9,965.49				
Large - 72" and Larger	EA	\$12,826.09				
Drop Manhole	EA	\$9,789.87				
Service Laterals:						
Service Lateral	EA	\$8,501.17				
Catch Basins:						
Gutter Style	EA	\$8,347.99				
Open Area (Parking Lot)	EA	\$8,706.83				
Global Difficulty Factors:						
Erosion Control		0.80	Open Country with erosion control (Riverbank, coastal, etc.)			
Forested Land		1.15	Cutting and stump removal required, low or no traffic control & utility interference			
Gravel Roads		0.90	No traffic control, low or no utility interference			
High Urban		1.32	Assumes asphalt pavement, high level of traffic control and high level of utility interference			
Low Urban		1.00	Assumes 3" asphalt pavement, low level of traffic control and low level of utility interference			
Medium Urban		1.19	Assumes asphalt pavement, medium level of traffic control and medium level of utility interference			
Open Country		0.74	Open country, natural restoration, no or low traffic control and no or low utility interference			
Tunneled Crossings		4.00				
User Defined 1		0.75	GDF Description UD 1			
User Defined 2		0.81	GDF Description UD 2			
Supplemental Factors:						
Groundwater Control		1.30				
None		1.00				
Rock Excavation		1.40				
User Defined 1		1.21	SF Description UD 1			
User Defined 2		1.17	SF Description UD 2			
Estimating Calculations:						
Is this segment Tunneled? (1 = Yes, 0 = No)		0				
Is this Segment Open Cut? (1 = Yes, 0 = No)		1				
Are Pipes Concrete Encased? (0= Yes, 1= No)		1				
Pipe 1 Diameter (Inches)		27.00	P1			
Pipe 1 Diameter (ft)		2.25				
Pipe 1 Area (sf/LF)		7.07				
Is Pipe 1 DI? (1 = Yes, 0 = No)		0				
Is Pipe 1 Steel? (1 = Yes, 0 = No)		0				
Is there Pipe 2? (1 = Yes, 0 = No)		0				
Pipe 2 Diameter (Inches)		14.00	P2			
Pipe 2 Diameter (ft)		1.17				
Pipe 2 Area (sf/LF)		3.67				
Is Pipe 2 DI? (1 = Yes, 0 = No)		0				
Is Pipe 2 Steel? (1 = Yes, 0 = No)		0				
Is there Pipe 3? (1 = Yes, 0 = No)		0				
Pipe 3 Diameter (Inches)		20.00	P3			
Pipe 3 Diameter (ft)		1.67				
Pipe 3 Area (sf/LF)		5.24				
Is Pipe 3 DI? (1 = Yes, 0 = No)		0				
Is Pipe 3 Steel? (1 = Yes, 0 = No)		0				
Maximum Pipe Diameter (ft)		2.25				
Pipe Trench						
Is Trench Box Used? (SWTD >4' and <8') (1 = Yes, 0 = No)		0		Trench Box Not Used		
Is Wood Shoring Used? (SWTD ≥ 8' and ≤ 20') (1 = Yes, 0 = No)		0				
Is Wood Sheet Piling used? (SWTD > 20') (1=Yes, 0 = No)		0				
Is Wood Shoring Used for SWTD < 4' (1 = Yes, 0 = No)		0				
Total Pipe Length (ft)		2,000	L			
Bedding Thickness (ft)		0.50	BT			
Pipe Zone Above Pipe (ft)		1.00	PZAP			
Trench Depth (Pipe Cover Depth + Pipe Diameter + Bedding Thickness) (ft)		7.75	TD			
Pipe Zone (Pipe Diameter + Pipe Zone Above Pipe)		3.25	PZ			
Trench Width at Bottom of Trench (ft)		5.25	W1			
Straight Wall Trench Depth (ft)		4.00	SWTD			
Total Straight Trench Excavation Quantity (TD * W * Length) (cy)		3,013.89				
Side Slope Depth (Trench Depth - Bedding Thickness - Vertical Depth feet)		3.75	SSD			
Side Slope Multiple		1.00	SS			
Total Sloped Excavation (cy)		1,041.67				
Total Excavation (cy)		4,055.56				
Total Pipe Bedding Quantity (cy)		294.44				
Total Pipe Volume (cy)		294.52				
Total Pipe 2 Volume (cy)		0.00				
Total Pipe 3 Volume (cy)		0.000				
Total Pipe Zone Quantity (cy)		989.38				
Total Trench Zone Quantity (cy)		3,088.19				
Trench Width at Top of Trench (ft)		12.75	W2			
Area of Surface Restoration (sq)		2,833.33				
Common Excavation Unit Cost (per CY, No Trench Box)		\$8.31				
Common Excavation Unit Cost (per CY, with Trench Box)		\$7.39				

Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
Gravity Pipe - Outfall							
<i>Excavation:</i>							
Pipe Trench - Trench Box Not Used	4,542	CY	3472.78	m3	\$6.31	\$28,681	
Pipe Bedding:							
Imported	194	CY	148.66	m3	\$43.70	\$8,498	
Pipe Zone Backfill:							
Native	969	CY	741.13	m3	\$25.36	\$24,587	
Trench Zone Backfill:							
Native	3,086	CY	2359.56	m3	\$10.81	\$32,758	
Concrete Encasement (Includes Bedding and Pipe Zone)	0	CY	0.00	m3	\$402.25	\$0	
Load and Haul Away Excess Excavated Material	487	CY	372.08	m3	\$8.24	\$3,038	
Pipes:							
Pipes 1 (PVC SDR 35, 24 inch diameter)	2,000	LF	609.80	m	\$30.50	\$61,175	
Pipes 2 (None)	0	LF	0.00	m	\$14.80	\$0	
Pipes 3 (None)	0	LF	0.00	m	\$31.74	\$0	

Pipe Fittings:						
Pipe 1 Fitting Allowance: Low	5.0%				\$61,175.29	\$3,059
Pipe 2 Fitting Allowance: Low	0.0%				\$0.00	\$0
Pipe 3 Fitting Allowance: High	0.0%				\$0.00	\$0
T-Lock Lining for RCP Pipe:						
Pipe 1	0	LF	0.00	m	\$99.10	\$0
Pipe 2	0	LF	0.00	m	\$28.24	\$0
Pipe 3	0	LF	0.00	m	\$57.81	\$0
Dewatering:						
Trench Dewatering	2,000	LF	609.60	m	\$5.07	\$11,345
Shoring:						
Wood Shoring (for SWTD ≥ 8' and ≤ 20')	0	SF	0.00	m2	\$1.03	\$0
Wood Sheet Piling (for SWTD greater than 20')	0	SF	0.00	m2	\$11.30	\$0
Surface Restoration:						
Asphalt Paving Repair (3" thick)						
Saw Cut Existing Pavement	4,000	LF	1218.20	m	\$1.39	\$5,578
Remove Existing Pavement	2,833	SY	2369.03	m2	\$5.07	\$14,365
Haul Debris to Dump	238	CY	180.52	m3	\$10.02	\$2,365
Dump Charge	238	CY	180.52	m3	\$105.57	\$24,925
Asphalt Paving Repair	25,500	SF	2369.03	m2	\$4.01	\$102,291
Subtotal						\$322,842
Global Difficulty Factor (Low Urban)	100%				\$322,841.83	\$322,842
Appurtenances:						
Manholes:						
Small - 48"	0	EA			\$8,652.69	\$0
Medium - 60"	0	EA			\$9,965.49	\$0
Large - 72" and Larger	4	EA			\$12,826.08	\$51,304
Drop Manhole	0	EA			\$9,789.87	\$0
Service Lateral:						
Service Lateral	0	EA			\$5,501.17	\$0
Catch Basins:						
Gutter Style	0	EA			\$8,347.99	\$0
Open Area (Parking Lot)	0	EA			\$8,708.93	\$0
Other Facilities:						
User Defined 1 (1)	0	EA			\$0.00	\$0
User Defined 2 (1)	0	EA			\$0.00	\$0
User Defined 3 (1)	0	EA			\$0.00	\$0
User Defined 4 (0)	0	EA			\$0.00	\$0
User Defined 5 (0)	0	EA			\$0.00	\$0
Subtotal - Appurtenances						\$51,304
Tunnel:						
Casing	0	LF	0.00	m	\$378.53	\$0
Carrier	0	LF	0.00	m	\$375.47	\$0
Jacking Shaft:						
Shoring	0	SF	0.00	m2	\$132.35	\$0
Tremie	0	CY	0.00	m3	\$263.95	\$0
Riser	0	LF	0.00	m	\$0.00	\$0
Exc. & Backfill	0	CY	0.00	m3	\$0.00	\$0
Receiving Shaft:						
Shoring	0	SF	0.00	m2	\$84.73	\$0
Tremie	0	CY	0.00	m3	\$263.95	\$0
Riser	0	LF	0.00	m	\$0.00	\$0
Exc. & Backfill	0	CY	0.00	m3	\$0.00	\$0
USER DEFINED ESTIMATE ITEMS:	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT	TOTAL COST
Red Flags:						
River Crossings	0		0		\$0.00	\$0
Detours	0		0		\$0.00	\$0
Utility Conflicts	0		0		\$0.00	\$0
Existing Pipe Removal	0		0		\$0.00	\$0
Item 1 Description	0		0		\$0.00	\$0
Item 2 Description	0		0		\$0.00	\$0
Item 3 Description	0		0		\$0.00	\$0
Item 4 Description	0		0		\$0.00	\$0
Item 5 Description	0		0		\$0.00	\$0
Item 6 Description	0		0		\$0.00	\$0
Item 7 Description	0		0		\$0.00	\$0
Item 8 Description	0		0		\$0.00	\$0
Item 9 Description	0		0		\$0.00	\$0
Item 10 Description	0		0		\$0.00	\$0
Item 11 Description	0		0		\$0.00	\$0
Item 12 Description	0		0		\$0.00	\$0
Item 13 Description	0		0		\$0.00	\$0
Item 14 Description	0		0		\$0.00	\$0
Item 15 Description	0		0		\$0.00	\$0
Subtotal - All						\$373,948
Allowance for Misc Items	5%				\$373,945.86	\$18,697
Subtotal						\$392,643
Ground Water Control (User Specific)	0%				\$392,643.15	\$0
Supplemental Factor (None)	100%				\$392,643.15	\$392,643
TOTAL:						\$392,643
Gravity Pipe - Outfall	2,000	LF	\$196.32		\$392,643	
Segment Cost with Standard Additional Project Costs Added	2,000	LF	\$196.32		\$392,643	
Segment Cost with Standard Additional Project Costs and Contractor Markups Added	2,000	LF	\$292.22		\$584,433	
Segment Cost, Contractor Markup, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	2,000	LF	\$296.68		\$573,350	
Segment Cost with Standard Additional Project Costs, Contractor Markup, and Location Adjustment Factor Added	2,000	LF	\$296.68		\$573,350	

Sample Information		
Project Name	Longview RO	
Project Number	156197.00.JT	
Sample Description	Mint Farm Groundwater	
Sample Collection Date	11/29/2016	
Bulk Sample ID	Q362001	
Characterization Lab ID	Q386201, R100201	
Total Metals Analysis		
Barium	µg/L	13.6
Boron	µg/L	<100 U
Calcium	µg/L	33,000
Iron	µg/L	957
Magnesium	µg/L	9,140
Manganese	µg/L	630
Potassium	µg/L	3,960
Silica	µg/L	56,900
Sodium	µg/L	11,700
Strontium	µg/L	93.2
Hardness, Ca	mg/L as CaCO ₃	82.4
Hardness, Mg	mg/L as CaCO ₃	37.6
Hardness, total	mg/L as CaCO ₃	120
General Chemistry Analysis		
Alkalinity, total	mg/L as CaCO ₃	47.3
Alkalinity, bicarbonate	mg/L as CaCO ₃	<5.00 U
pH	Units	7.45
Turbidity	NTU	3.78
Conductivity	µS/cm	296
Total Dissolved Solids	mg/L	211
Ammonia	mg/L-N	0.16
Nitrate	mg/L-N	<0.010 U
Nitrite	mg/L-N	<0.010 U
TKN	mg/L-N	0.52
Chloride	mg/L	28.4
Sulfate	mg/L	1.08
Fluoride	mg/L	<0.20 U
TOC	mg/L	1.52
Reactive Silica	mg/L	59.0
Treatability Analysis		
Hardness, Ca	mg/L as CaCO ₃	86
Hardness, Mg	mg/L as CaCO ₃	32
Hardness, total	mg/L as CaCO ₃	118
Chlorine Demand	mg/L-Cl ₂	

J = Estimated value below reporting limit.

E = Estimated value above calibration range.

U = Not detected at specified detection limit.

REAGENT PREPARATION

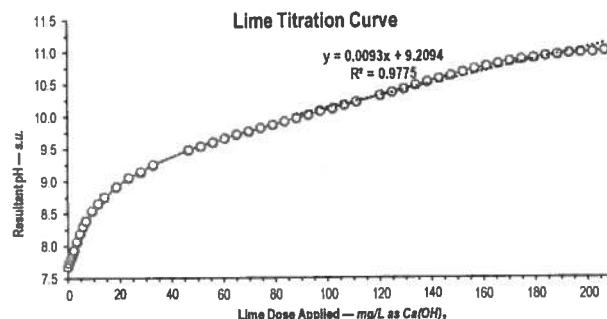
Reagent Type: Sodium Aluminate
Vendor: Kemira
Reagent Name: SAX-20
Reagent Concentration: 10.6 %
Specific Gravity: 1.48 g/mL
Reagent Concentration: 156,859 mg/L
Stock Solution Basis: as Al
Prepared Solution Basis: as Al
Prepared Reagent Concentration: 10,000 mg/L
Target Prepared Solution Volume: 100 mL
Total Volume Stock Solution: 6.38 mL of product
Total Mass Stock Solution: 9.46 g of product
Date of Preparation: 1/5/2017
Analyst: AMB

Reagent Type: Alum
Vendor: Kemira
Reagent Name: ALS
Reagent Concentration: 48.8 %
Specific Gravity: 1.33 g/mL
Reagent Concentration: 648,508 mg/L
Stock Solution Basis: as $\text{Al}_2(\text{SO}_4)_3 \cdot 14\text{H}_2\text{O}$
Prepared Solution Basis: as $\text{Al}_2(\text{SO}_4)_3 \cdot 14\text{H}_2\text{O}$
Prepared Reagent Concentration: 10,000 mg/L
Target Prepared Solution Volume: 100 mL
Total Volume Stock Solution: 1.54 mL of product
Total Mass Stock Solution: 2.05 g of product
Date of Preparation: 1/5/2017
Analyst: AMB

Reagent Type: Magnesium Chloride
Prepared Solution Basis: MgCl_2
Prepared Reagent Concentration: 10,000 mg/L
Target Prepared Solution Volume: 100 mL
Total Mass to Add: 1.00 g of product
Date of Preparation: 1/6/2017
Analyst: BJS

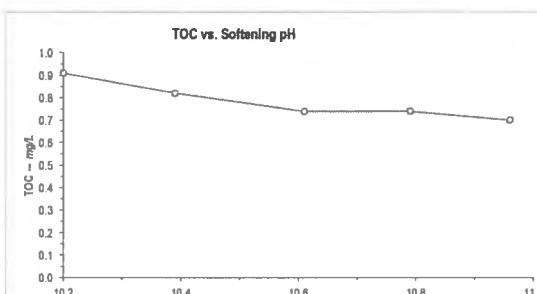
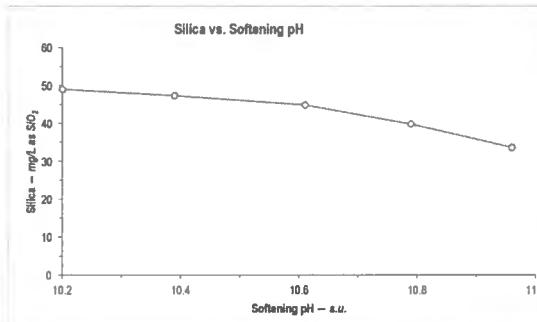
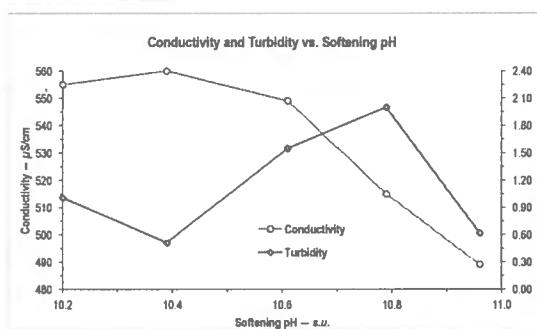
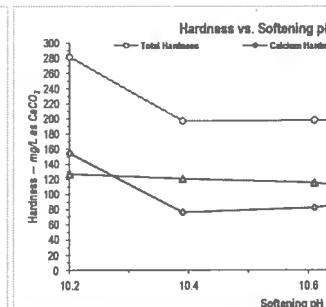
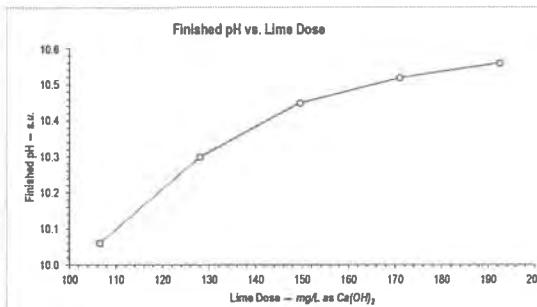
Reagent Type: Lime
Prepared Solution Basis: $\text{Ca}(\text{OH})_2$
Prepared Reagent Concentration: 10,000 mg/L
Target Prepared Solution Volume: 100 mL
Total Mass to Add: 1.00 g of product
Date of Preparation: 1/6/2017
Analyst: BJS

**Reagents prepared fresh each day as needed.


ch2m LIME TITRATION

Sample Name	Longview Mint Farm Groundwater
ASL ID	Q362001
Collection Date	11/29/2016
Test Date	1/4/2017
Analyst	AMB

Lime Strength	12 g/L as Ca(OH) ₂
Sample Volume	0.50 L






Lime Volume mL	Total Sample Volume L	Lime Dose mg/L as Ca(OH) ₂	Resultant pH s.u.
0.00	0.50	0.00	7.68
0.02	0.50	0.47	7.74
0.04	0.50	0.93	7.79
0.06	0.50	1.40	7.84
0.08	0.50	1.87	7.89
0.10	0.50	2.34	7.94
0.15	0.50	3.50	8.07
0.20	0.50	4.67	8.19
0.25	0.50	5.84	8.30
0.30	0.50	7.01	8.39
0.40	0.50	9.34	8.54
0.50	0.50	11.7	8.65
0.60	0.50	14.0	8.75
0.80	0.50	18.7	8.91
1.00	0.50	23.3	9.05
1.20	0.50	28.0	9.14
1.40	0.50	32.6	9.25
2.00	0.50	46.6	9.48
2.20	0.50	51.2	9.54
2.40	0.50	55.8	9.60
2.60	0.50	60.5	9.66
2.80	0.50	65.1	9.72
3.00	0.50	69.7	9.77
3.20	0.50	74.3	9.82
3.40	0.50	78.9	9.87
3.60	0.50	83.5	9.92
3.80	0.50	88.1	9.97
4.00	0.50	92.7	10.02
4.20	0.50	97.3	10.08
4.40	0.50	102	10.12
4.60	0.50	107	10.17
4.80	0.50	111	10.22
5.20	0.51	120	10.32
5.40	0.51	125	10.37
5.60	0.51	129	10.42
5.80	0.51	134	10.48
6.00	0.51	139	10.53
6.20	0.51	143	10.58
6.40	0.51	148	10.63
6.60	0.51	152	10.68
6.80	0.51	157	10.73
7.00	0.51	161	10.77
7.20	0.51	166	10.81
7.40	0.51	170	10.85
7.60	0.51	175	10.88
7.80	0.51	180	10.90
8.00	0.51	184	10.93
8.20	0.51	189	10.95
8.40	0.51	193	10.97
8.60	0.51	198	10.98
8.80	0.51	202	10.99
9.00	0.51	207	11.01

Original Characterization Analysis		SDG No. Q386201
pH	s.u.	7.45
Turbidity	NTU	3.78
Conductivity	mS/cm	296
Titration Starting Conditions		
Initial Sample pH	s.u.	7.66
Initial Temperature	°C	20.2
MgCl ₂ Addition	mg	98.2
pH after magnesium	s.u.	7.68

Linear Trendline from pH 9.97-11.01		
Slope	0.0093	
Intercept	9.2094	
R ₂	0.9775	
Calculated Lime Dose to Reach Target pH		
Target pH 10.2	mg/L as Ca(OH) ₂	106.5
Target pH 10.4	mg/L as Ca(OH) ₂	128.0
Target pH 10.6	mg/L as Ca(OH) ₂	149.5
Target pH 10.8	mg/L as Ca(OH) ₂	171.0
Target pH 11.0	mg/L as Ca(OH) ₂	192.5

Test Information		Raw Water Characterization			
Project Name	Longview RD	Temperature	°C	21.0	°C
Source	Min Farm Groundwater	pH	s.u.	7.45	
Sample Location	MFRWTP	Turbidity	NTU	3.78	
Sample Date/Time	11/29/2016	Alkalinity, total	mgL as CaCO ₃	47.3	
Project Number	156197-00 JT	TOC	mgL	1.52	
Series Number	JT-1	Silica	mgL	56.9	
Analyst	BJS	Reactive Silica	mgL	59.0	
Test Date/Time	1/5/2017	Conductivity	µS/cm	296	
Test Objectives					
75% silica removal via lime softening					
Reagent Characteristics					
Type	Magnesium	Lime	Coagulant	Coagulant	
Chemical	MgCl ₂	Ca(OH) ₂	Sodium Aluminate	Alum	
Stock Strength	10 000 mgL	10 000 mgL	10 000 mgL	10 000 mgL	
Stock Reagent Basis	MgCl ₂	Ca(OH) ₂	NaAlO ₂	Al ₂ (SO ₄) ₃ * 14H ₂ O	
Jar 8		1	2	3	4
Target pH	Units	10.2	10.4	10.6	10.8
Volume				10.0	11.0
Magnesium as Mg as MgCl ₂	Stock Added	39.2 mL			
	Dose, mgL	50			
	Dose, mgL	196			
Lime as Ca(OH) ₂	Stock Added	21.3 mL	25.6 mL	29.9 mL	34.2 mL
	Dose, mgL	106.5	128.0	149.5	171.0
pH during mixing	Units	10.20	10.39	10.61	10.79
Rapid Mix	RPM	300			
	Duration	1 min			
Flocculation	RPM	60/40/20			
	Velocity Gradient	52 / 31 / 13 sec ⁻¹ for 20° C			
	Total Duration	30			
	Duration per Stage	10/10/10 min			
Floc Observations (See "JT-1 Photos" Tab)		Large quantity of large, white floc	Large quantity of large, white floc	Large quantity of large, white floc, hazy white appearance between floc	Large quantity of large, white floc, hazy white appearance between floc
Settling Period		30 minutes			
Settling Observations (See "JT-1 Photos" Tab)		Fast settling: floc is high density, slightly brownish yellow in color, not easily broken or disturbed; supernatant is clear and uncolored.			
Supernatant - Filtered (Whitman 40)					
LAB ID (SDG)	R103291	R103292	R103293	R103294	R103295
pH	Units	10.06	10.30	10.45	10.52
Turbidity	NTU	1.01	0.52	1.55	2.00
Conductivity	µS/cm	555	560	549	515
TOC	mgL	0.91	0.82	0.74	0.74
Reactive Silica	mgL as SiO ₂	56.2	51.0	47.2	43.8
Silica	mgL as SiO ₂	49.0	47.3	44.9	39.8
Silica Removal	% Removal	13.9	16.9	21.1	39.1
Calcium	mgL	62.0	30.6	33.0	40.4
Magnesium	mgL	30.8	29.3	28.1	23.7
Hardness, Ca	mgL as CaCO ₃	155	76	82	101
Hardness, Mg	mgL as CaCO ₃	127	121	116	98
Hardness, total	mgL as CaCO ₃	282	197	198	198
Alkalinity, total	mgL as CaCO ₃				
Alkalinity, phenolphthalein	mgL as CaCO ₃				
Alkalinity, bicarbonate	mgL as CaCO ₃				
Alkalinity, carbonate	mgL as CaCO ₃				
Alkalinity, hydroxide	mgL as CaCO ₃				
Total Dissolved Solids	mgL				
Ammonia	mgL-N				
Nitrate	mgL-N				
Nitrite	mgL-N				
TKN	mgL-N				
Chloride	mgL				
Sulfate	mgL				
Fluoride	mgL				
Chlorine Demand	mgL-Cl ₂				

ch2m: JAR TEST No. 1 PHOTOGRAPHS- Lime Test

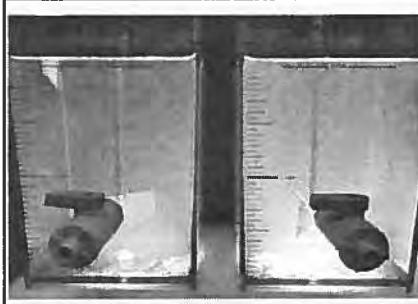


Photo 1: Jars 1 and 2 end of floc stage 1 (60 RPM)

Photo 2: Jars 3 and 4 end of floc stage 1 (60 RPM)

Photo 3: Jar 5 end of floc stage 1 (60 RPM)

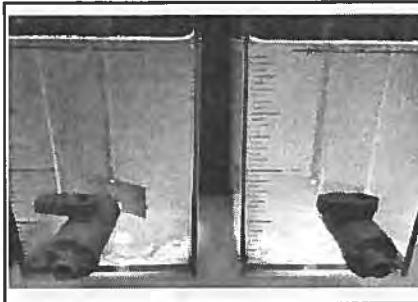


Photo 4: Jars 1 and 2 end of floc stage 2 (40 RPM)

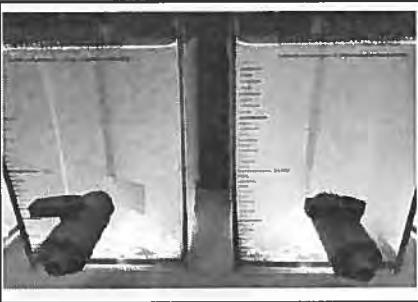


Photo 5: Jars 3 and 4 end of floc stage 2 (40 RPM)

Photo 6: Jar 5 end of floc stage 2 (40 RPM)

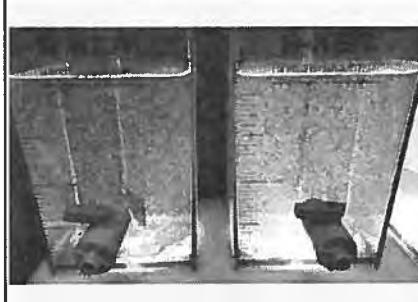


Photo 7: Jars 1 and 2 end of floc stage 3 (20 RPM)

Photo 8: Jars 3 and 4 end of floc stage 3 (20 RPM)

Photo 9: Jar 5 end of floc stage 3 (20 RPM)

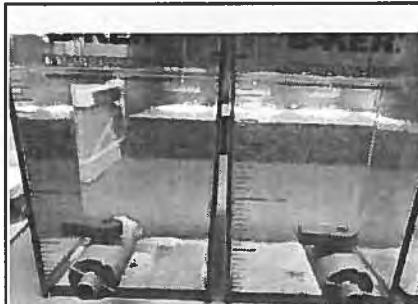


Photo 10: Jars 1 and 2 start of settling phase

Photo 11: Jars 3 and 4 start of settling phase

Photo 12: Jar 5 start of settling phase

Photo 13: Jars 1 and 2 end of settling phase (30 min)

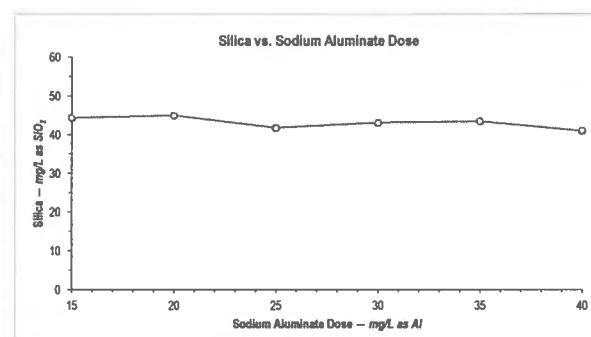
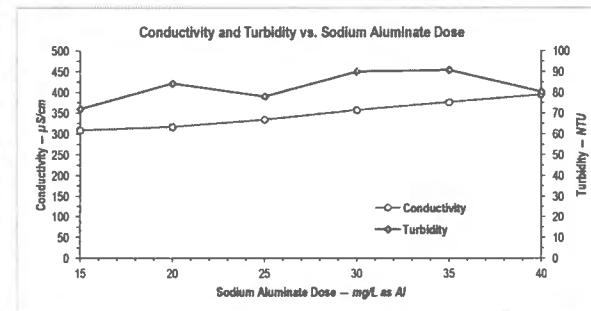
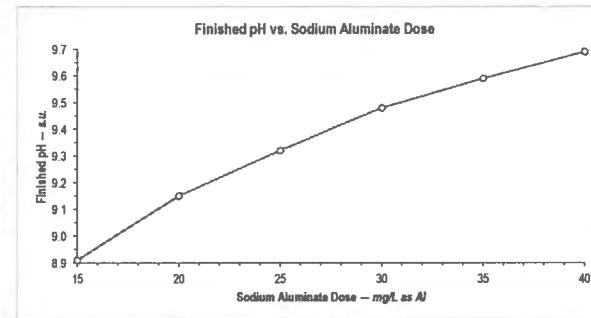
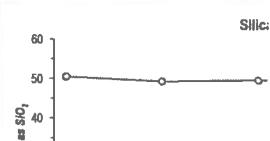
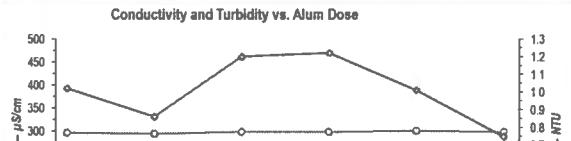
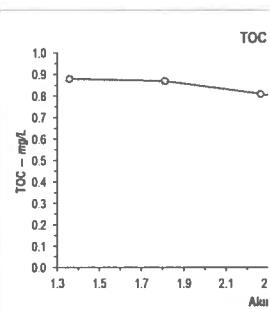
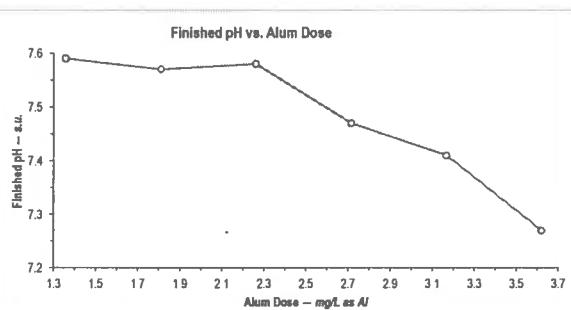
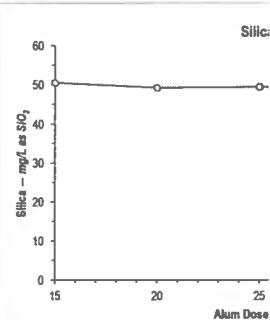
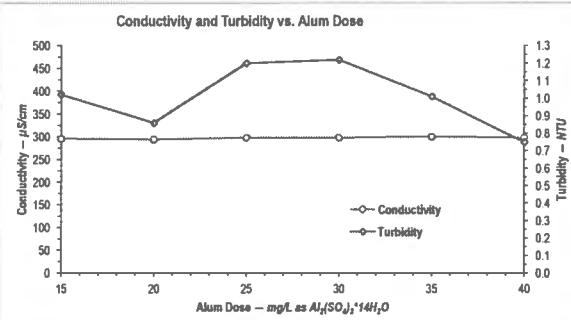
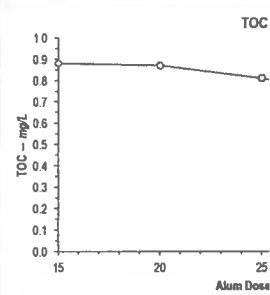
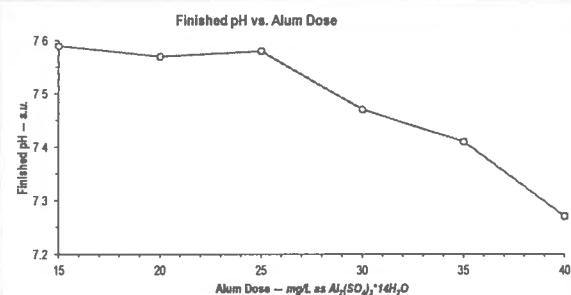




Photo 14: Jars 3 and 4 end of settling phase (30 min)

Photo 15: Jar 5 end of settling phase (30 min)









Test Information						
Project Name	Longview RO	Temperature	°C	21.0		
Source	Mill Farm Groundwater	pH	s.u.	7.45		
Sample Location	MFRWTP	Turbidity	NTU	3.78		
Sample Date/Time	11/29/2016	Alkalinity, total	mg/L as CaCO ₃	47.3		
Project Number	156197.00.JT	TOC	mg/L	1.52		
Series Number	JT-2	Silica	mg/L	56.9		
Analyst	AMB	Reactive Silica	mg/L	50.0		
Test Date/Time	1/5/2017 12:01	Conductivity	µS/cm	296		
Test Objectives						
75% silica removal via sodium aluminate coagulation/flocculation						
Reagent Characteristics						
Type	Magnesium	Lime	Coagulant	Coagulant		
Chemical	MgCl ₂	Ca(OH) ₂	Sodium Aluminate	Alum		
Stock Strength	10,000 mg/L	10,000 mg/L	10,000 mg/L	10,000 mg/L		
Stock Reagent Basis	MgCl ₂	Ca(OH) ₂	as Al	Al ₂ (SO ₄) ₃ * 14H ₂ O		
Jar #	1	2	3	4	5	8
LAB ID (#DG)	R102001	R102002	R102003	R102004	R102005	R102006
Initial pH	Units	7.5	7.5	7.6	7.6	7.5
Volume				2.0 L		
Sodium Aluminate	Stock Added	3.00 mL	4.00 mL	5.00 mL	6.00 mL	7.00 mL
as Al	Dose, mg/L	15.0	20.0	25.0	30.0	35.0
pH during mixing	Units	8.80	9.03	9.19	9.31	9.39
Rapid Mix	RPM			300 rpm		
	Duration			1 min		
Flocculation	RPM			60 / 40 / 20 rpm		
	Velocity Gradient			52 / 31 / 13 sec ⁻¹ for 20°C		
	Total Duration			30 min		
	Duration per Stage			10 / 10 / 10 min		
Floc Observations (See "JT-2 Photos" Tab)	No observable floc formation- supernatant less hazy than other jars	No observable floc formation- supernatant hazy	No observable floc formation- supernatant hazy	No observable floc formation- supernatant hazy Near end of first floc stage, 1-2 white grains of precipitate noticeable on bottom of jar; grains increasing last floc stage.	No observable floc formation- supernatant hazy Near end of first floc stage, 5-6 white grains of precipitate noticeable on bottom of jar; grains gone during last floc stage.	
Settling Period	30 minutes					
Settling Observations (See "JT-2 Photos" Tab)	No observable settling or cleaning of supernatant					
Supernatant - Filtered (Whatman 40)						
pH	Units	8.91	9.15	9.32	9.48	9.59
Turbidity	NTU	71.9	84.3	78.0	90.0	90.8
Conductivity	µS/cm	309	317	334	357	376
TOC	mg/L	1.66	1.73	1.85	1.92	2.11
Reactive Silica	mg/L as SiO ₂	48.0	51.8	47.8	46.4	51.6
Silica	mg/L as SiO ₂	44.3	44.9	41.7	43.0	43.4
Silica Removal	% Removal	22.1	21.1	26.7	24.4	23.7
Calcium	mg/L	28.0	28.1	27.2	27.5	27.2
Magnesium	mg/L	8.14	8.09	7.99	7.84	7.79
Alkalinity, total	mg/L as CaCO ₃					
Alkalinity, bicarbonates	mg/L as CaCO ₃					
Total Dissolved Solids	mg/L					
Ammonia	mg/L-N					
Nitrate	mg/L-N					
Nitrite	mg/L-N					
TKN	mg/L-N					
Chloride	mg/L					
Sulfate	mg/L					
Fluoride	mg/L					
Chlorine Demand	mg/L-Cl ₂					

ch2m: JAR TEST No. 2 PHOTOGRAPHS- Sodium Aluminate Test

Test Information		Raw Water Characterization			
Project Name	Longview RO	Temperature	°C	21.0	°C
Source	Mint Farm Groundwater	pH	s.u.	7.45	
Sample Location	MFRWTP	Turbidity	NTU	3.78	
Sample Date/Time	11/29/2016	Alkalinity, total	mg/L as CaCO ₃	47.3	
Project Number	156197.00 JT	TOC	mg/L	1.52	
Series Number	JT-3	Silica	mg/L	56.9	
Analyst	AMB	Reactive Silica	mg/L	59.0	
Test Date/Time	1/5/2017 15:54	Conductivity	µS/cm	296	
Test Objectives					
75% silica removal via aluminum sulfate coagulation/flocculation					
Reagent Characteristics					
Type	Magnesium	Lime	Coagulant	Coagulant	
Chemical	MgCl ₂	Ca(OH) ₂	Sodium Aluminate	Alum	
Stock Strength	10,000 mg/L	10,000 mg/L	10,000 mg/L	10,000 mg/L	
Stock Reagent Basis	MgCl ₂	Ca(OH) ₂	NaAlO ₂	Al ₂ (SO ₄) ₃ * 14H ₂ O	
Jar #	1	2	3	4	5
LAB ID (S00)	R102007	R102008	R102009	R102010	R102011
Initial pH	Units	7.7	7.7	7.7	7.7
Volume		2.0 L			
Alum	Stock Added	3.00 mL	4.00 mL	5.00 mL	6.00 mL
as Al	Dose, mg/L	1.36	1.81	2.26	2.71
as Al ₂ (SO ₄) ₃ * 14H ₂ O	Dose, mg/L	15	20	25	30
pH after Addition	Units	7.43	7.37	7.30	7.23
Rapid Mix	RPM	300 rpm			
	Duration	1 min			
Flocculation	RPM	60/40/20 rpm			
	Velocity Gradient	52 / 31 / 13 sec ⁻¹ for 20° C			
	Total Duration	30 min			
	Duration per Stage	10/10/10 min			
Floc Observations Stage 1 (See "JT-3 Photos" Tab)		Medium quantity white-clear pin floc; supernat. hazy	Large quantity white-clear pin floc; supernat. hazy	Large quantity white-clear pin floc; supernat. hazy	Large quantity white-clear pin floc; supernat. hazy
Floc Observations Stage 2		Large quantity medium size floc; clear supernat.	Large quantity medium size floc; clear supernat.	Large quantity medium size floc; clear supernat.	Large quantity medium size floc; clear supernat.
Floc Observations Stage 3		Large quantity large size floc; clear supernat.	Large quantity large size floc; clear supernat.	Very large quantity medium size floc; clear supernat.	Very large quantity medium size floc; clear supernat.
Settling Period		30 minutes			
Settling Observations (See "JT-3 Photos" Tab)		Large quantity of fast settling pale yellow colored floc			
Supernatent Filtered (Whatman 40)					
pH	Units	7.6	7.6	7.6	7.5
Turbidity	NTU	1.02	0.860	1.20	1.22
Conductivity	µS/cm	296	294	298	298
TOC	mg/L	0.88	0.87	0.81	0.73
Reactive Silica	mg/L as SiO ₂	56.6	53.8	58.0	56.2
Silica	mg/L as SiO ₂	50.5	49.2	49.4	48.8
Silica Removal	% Removal	11.2	13.5	13.2	14.2
Calcium	mg/L	29.5	29.1	29.2	29.1
Magnesium	mg/L	8.50	8.46	8.60	8.46
Alkalinity, total	mg/L as CaCO ₃				
Alkalinity, bicarbonate	mg/L				
Total Dissolved Solids	mg/L				
Ammonia	mg/L-N				
Nitrate	mg/L-N				
Nitrite	mg/L-N				
TKN	mg/L-N				
Chloride	mg/L				
Sulfate	mg/L				
Fluoride	mg/L				
Chlorine Demand	mg/L-Cl ₂				

ch2m: JAR TEST No. 3 PHOTOGRAPHS- Aluminum Sulfate Test

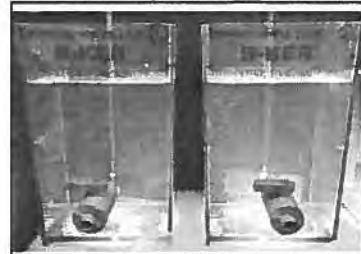


Photo 1: Jars 1 and 2 pre-test

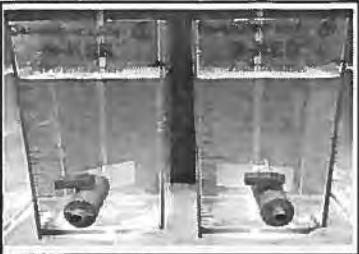


Photo 2: Jars 3 and 4 pre-test

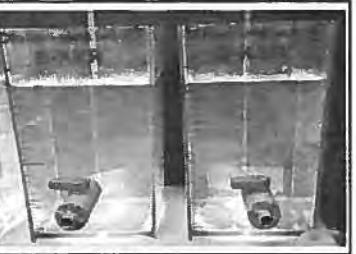


Photo 3: Jars 5 and 6 pre-test



Photo 4: Jars 1 and 2 end of floc stage 1 (80 RPM)

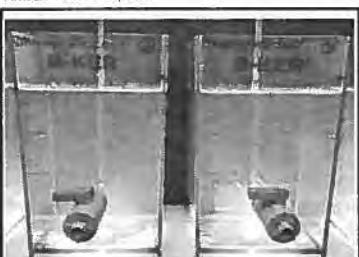


Photo 5: Jars 3 and 4 end of floc stage 1 (80 RPM)



Photo 6: Jars 5 and 6 end of floc stage 1 (80 RPM)

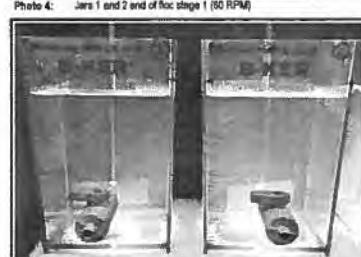


Photo 7: Jars 1 and 2 end of floc stage 2 (40 RPM)

Photo 8: Jars 3 and 4 end of floc stage 2 (40 RPM)

Photo 9: Jars 5 and 6 end of floc stage 2 (40 RPM)

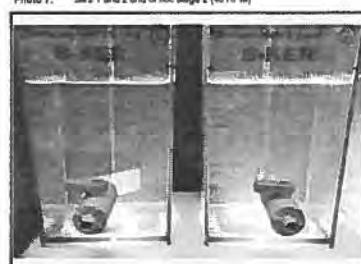


Photo 10: Jars 1 and 2 end of floc stage 3 (20 RPM)

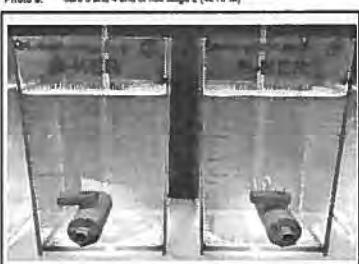


Photo 11: Jars 3 and 4 end of floc stage 3 (20 RPM)

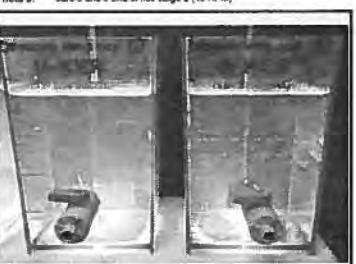


Photo 12: Jars 5 and 6 end of floc stage 3 (20 RPM)

Photo 13: Jars 1 and 2 start of settling phase

Photo 14: Jars 3 and 4 start of settling phase

Photo 15: Jars 5 and 6 start of settling phase

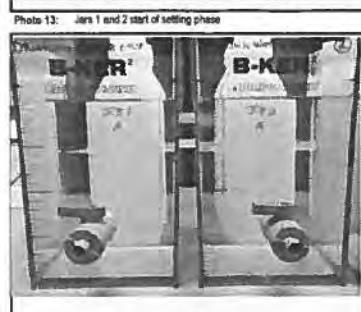


Photo 16: Jars 1 and 2 end of settling phase (30 min)

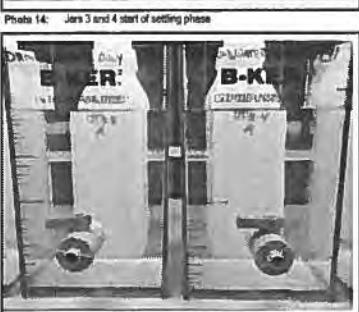


Photo 17: Jars 3 and 4 end of settling phase (30 min)

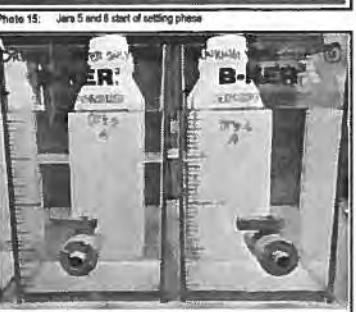
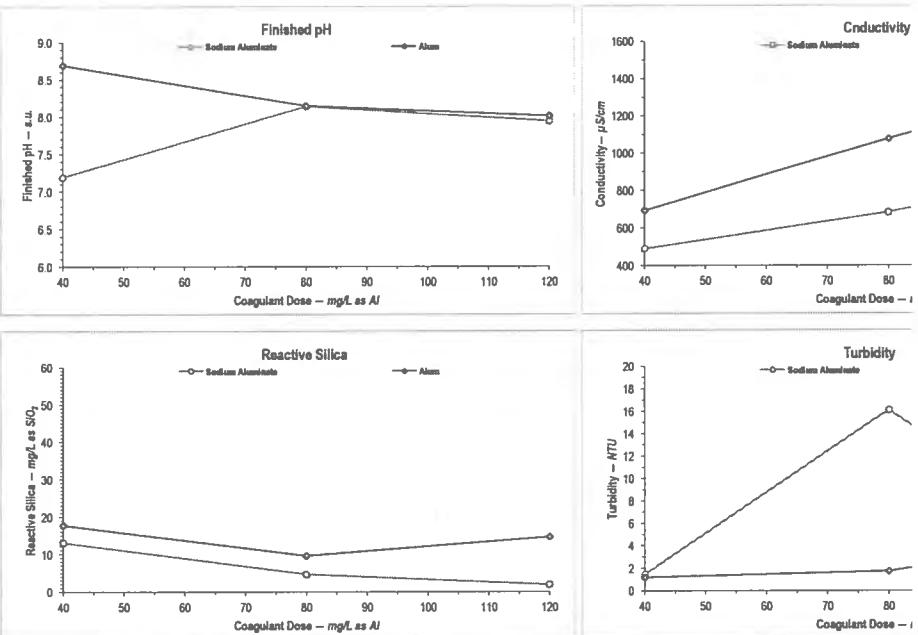



Photo 18: Jars 5 and 6 end of settling phase (30 min)

Test Information			Raw Water Characterization		
Project Name	Longview RO		Temperature °C	21.0 °C	
Source	Mini Farm Groundwater		pH s.u.	7.45	
Sample Location	MFRWTP		Turbidity NTU	3.78	
Sample Date/Time	11/29/2016		Alkalinity, total mg/L as CaCO ₃	47.3	
Project Number	156197 00 JT		TOC mg/L	1.52	
Series Number	JT-4		Silica mg/L	56.9	
Analyst	AMB		Reactive Silica mg/L	59.0	
Test Date/Time	1/20/2017 16:30		Conductivity $\mu\text{S}/\text{cm}$	296	
Test Objectives					
75% silica removal via coagulation/flocculation					
Reagent Characteristics					
Type	Magnesium	Lime	Coagulant	Coagulant	Caustic
Chemical	MgCl ₂	Ca(OH) ₂	Sodium Aluminate	Alum	Sodium Hydroxide
Stock Strength	10,000 mg/L	10,000 mg/L	156,859 mg/L	58,684 mg/L	1.0 N
Stock Reagent Basis	as MgCl ₂	as Ca(OH) ₂	as Al	as Al	as H ₂ SO ₄
Jar #	1	2	3	4	5
LAB ID (SDG)	R112901	R112902	R112903	R112904	R112905
Target pH	8.0-8.2	8.0-8.2	8.0-8.2	8.0-8.2	8.0-8.2
Volume	2.0 L				
Sodium Aluminate	Stock Added	0.51 mL	1.02 mL	1.53 mL	
as Al	Dose, mg/L	40.0	80.0	120	
Alum	Stock Added			1.36 mL	2.73 mL
as Al	Dose, mg/L			40.0	80.0
Sulfuric Acid	Stock Added	4.00 mL	7.70 mL	13.5 mL	
as H ₂ SO ₄	Dose, mg/L	58.1	189	331	
Sodium Hydroxide	Stock Added			9.00 mL	16.7 mL
as NaOH	Dose, mg/L			189	334
pH during mixing	Units	7.85	8.16	8.09	8.93
Rapid Mix	RPM	300 rpm			
	Duration	1 min			
	RPM	60 / 40 / 20 rpm			
Flocculation	Velocity Gradient	52 / 31 / 13 sec ⁻¹ for 20°C			
	Total Duration	30 min			
	Duration per Stage	10 / 10 / 10 min			
Floc Observations (See "JT-4 Photos" Tab)		Large quantity of large floc formations; Water not visible between flocs.	Large quantity of large floc formations; Water not visible between flocs	Large quantity of large floc formations; Water not visible between flocs	Large quantity of very large floc formations; Water not visible between flocs
					Large quantity of very large floc formations; Water not visible between flocs
Settling Period	30 minutes				
Settling Observations (See "JT-4 Photos" Tab)		Moderate to fast setting; water looks clear and uncolored.	Moderate to fast setting; water looks clear and uncolored.	Moderate to fast setting; water looks clear and uncolored.	Very fast setting; water looks clear and uncolored.
Supernatant Filtrated (Whitman 40)					
pH	Units	7.2	8.1	7.9	8.7
Turbidity	NTU	1.44	16.1	1.28	1.19
Conductivity	$\mu\text{S}/\text{cm}$	489	662	943	692
TOC	mg/L	1.39	1.43	1.35	0.41
Reactive Silica	mg/L as SiO ₂	13.0	4.66	1.86	17.7
Silica (EPA 200.7)	mg/L as SiO ₂	12.0	3.6	3.0	17.9
Silica Removal	% Removal	78.9	93.8	94.8	68.5
Calcium (EPA 200.7)	mg/L	24.4	20.2	21.6	24.8
Magnesium (EPA 200.7)	mg/L	7.42	5.92	6.13	6.82
Alkalinity, total	mg/L as CaCO ₃				
Alkalinity, bicarbonate	mg/L as CaCO ₃				
Total Dissolved Solids	mg/L				
Ammonia	mg/L-N				
Nitrate	mg/L-N				
Nitrite	mg/L-N				
TKN	mg/L-N				
Chloride	mg/L				
Sulfate	mg/L				
Fluoride	mg/L				
Chlorine Demand	mg/L-Cl ₂				

ch2m: JAR TEST No. 4 PHOTOGRAPHS- Sodium Aluminate and Aluminum Sulfate Retests

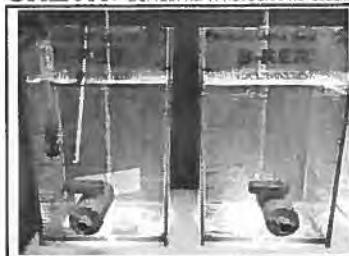


Photo 1: Jars 1 and 2 pre-test

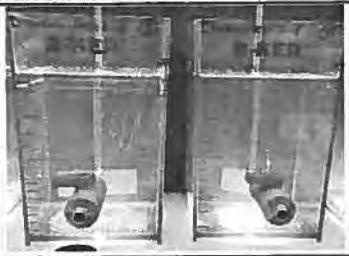


Photo 2: Jars 3 and 4 pre-test

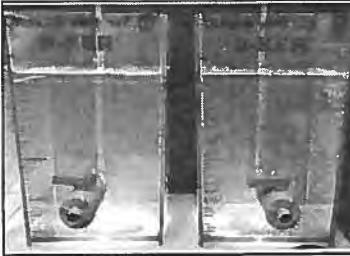


Photo 3: Jars 5 and 6 pre-test

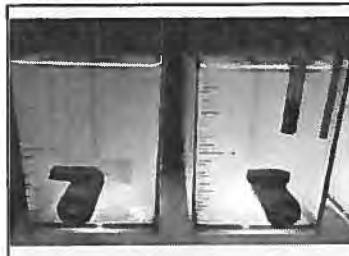


Photo 4: Jars 1 and 2 end of floc stage 1 (60 RPM)

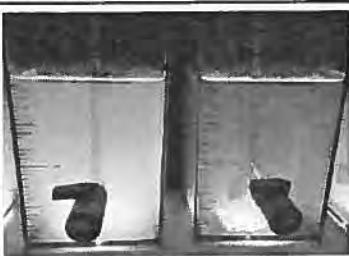


Photo 5: Jars 3 and 4 end of floc stage 1 (60 RPM)

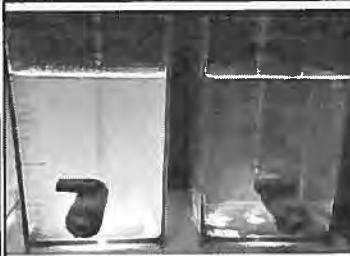


Photo 6: Jars 5 and 6 end of floc stage 1 (60 RPM)

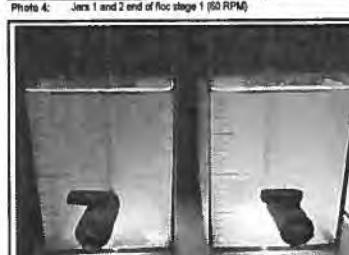


Photo 7: Jars 1 and 2 end of floc stage 2 (40 RPM)

Photo 8: Jars 3 and 4 end of floc stage 2 (40 RPM)

Photo 9: Jars 5 and 6 end of floc stage 2 (40 RPM)

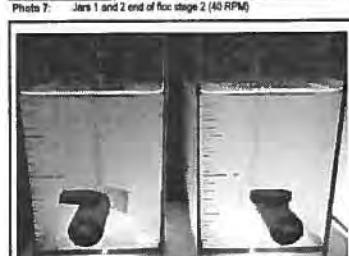


Photo 10: Jars 1 and 2 end of floc stage 3 (20 RPM)

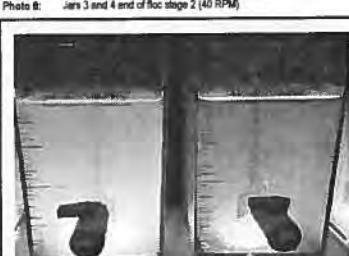


Photo 11: Jars 3 and 4 end of floc stage 3 (20 RPM)

Photo 12: Jars 5 and 6 end of floc stage 3 (20 RPM)

Photo 13: Jars 1 and 2 start of setting phase

Photo 14: Jars 3 and 4 start of setting phase

Photo 15: Jars 5 and 6 start of setting phase

Photo 16: Jars 1 and 2 end of setting phase (30 min)

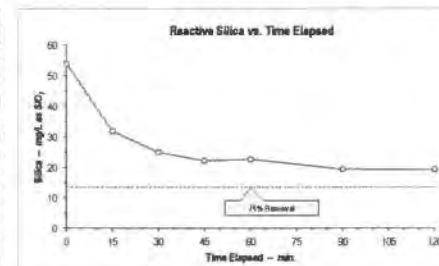


Photo 17: Jars 3 and 4 end of setting phase (30 min)

Photo 18: Jars 5 and 6 end of setting phase (30 min)

Test Information		Raw Water Characterization		
Project Name	Longview RO	Temperature	°C	21.0 °C
Source	West Farm Groundwater	pH	8.0	7.45
Sample Location	MR/RO/TFR	Turbidity	NTU	3.78
Sample Date/Time	11/26/2016	Alkalinity, total	mg/L as CaCO ₃	47.3
Project Number	158197.00 JT	TOC	mg/L	1.52
Series Number	JT-5	Reactive Silica	mg/L	56.0
Analyst	AMB	Reactive Silica, 0.45 µm fil.	mg/L	54.0
Test Date/Time	1/25/2017	Conductivity	µS/cm	296
Test Objectives				
75% silica removal via lime softening				
Reagent Characteristics				
Type	Magnesium	Lime	Coagulant	Coagulant
Chemical	MgCl ₂	Ca(OH) ₂	Sodium Aluminate	Alum
Stock Strength	10 440 mg/L	10 400 mg/L	10 000 mg/L	10 000 mg/L
Stock Reagent Basis	MgCl ₂	Ca(OH) ₂	NaAlO ₂	Al ₂ (SO ₄) ₃ * 14H ₂ O
Jar #	1	2	3	4
Target pH	Units	11.0		
Volume				2.0 L
Magnesium	Stock Added			3/5 ml
as Mg	Dose, mg/L			50
as MgCl ₂	Dose, mg/L			196
Lime	Stock Added	46.0 ml.		
as Ca(OH) ₂	Dose, mg/L	239		
Mixing	RPM			50
	Duration			120 min
pH during mixing	Units	11.0		
Floc Observations (See "JT-5 Photos" Tab)	Large quantity of pin floc with hazy supernat, progressed to very large quantity of pin floc by 45 min of mixing, then large quantity of medium size floc with hazy supernat through the end of mixing phase.			
Settling Period	30 minutes			
Settling Observations (See "JT-5 Photos" Tab)	Fast setting high density floc with clear supernat; though some floc remained suspended in the supernat through the 30 min settling phase.			
Turbidity Analyses				
Reactive Silica, 0.45 µm filtered, 0 min.	mg/L as SiO ₂	54.0		
Reactive Silica, 0.45 µm filtered, 15 min.	mg/L as SiO ₂	31.6		
Reactive Silica, 0.45 µm filtered, 30 min.	mg/L as SiO ₂	25.0		
Reactive Silica, 0.45 µm filtered, 45 min.	mg/L as SiO ₂	22.2		
Reactive Silica, 0.45 µm filtered, 60 min.	mg/L as SiO ₂	22.7		
Reactive Silica, 0.45 µm filtered, 90 min.	mg/L as SiO ₂	19.5		
Reactive Silica, 0.45 µm filtered, 120 min.	mg/L as SiO ₂	19.3		
Reactive Silica, Settled; Whatman 40 flt.	mg/L as SiO ₂	19.3		
Silica Removal	% Removal	64.3		
Supernat - Filtered (Whatman 40)				
LAB ID (SOG)	R115301			
pH	Units	10.4		
Turbidity	NTU	0.30		
Conductivity	µS/cm	445		
TOC	mg/L	0.67		
Reactive Silica	mg/L as SiO ₂	19.1		
Silica (EPA 200.7)	mg/L as SiO ₂	19.0		
Silica Removal	% Removal	63		
Calcium (EPA 200.7)	mg/L	57.7		
Magnesium (EPA 200.7)	mg/L	2.93		
Hardness, Ca (EPA 200.7)	mg/L as CaCO ₃	144		
Hardness, Mg (EPA 200.7)	mg/L as CaCO ₃	12.1		
Hardness, total (EPA 200.7)	mg/L as CaCO ₃	156		
Hardness, Ca (HACH)	mg/L as CaCO ₃	150		
Hardness, Mg (HACH)	mg/L as CaCO ₃	12.0		
Hardness, total (HACH)	mg/L as CaCO ₃	162		
Alkalinity, total	mg/L as CaCO ₃			
Alkalinity, phenolphthalein	mg/L as CaCO ₃			
Alkalinity, bicarbonate	mg/L as CaCO ₃			
Alkalinity, carbonates	mg/L as CaCO ₃			
Alkalinity, hydroxide	mg/L as CaCO ₃			
Total Dissolved Solids	mg/L			
Ammonia	mg/L-N			
Nitrate	mg/L-N			
Nitrite	mg/L-N			
TNN	mg/L-N			
Chloride	mg/L			
Sulfate	mg/L			
Fluoride	mg/L			
Chlorine Demand	mg/L Cl ₂			

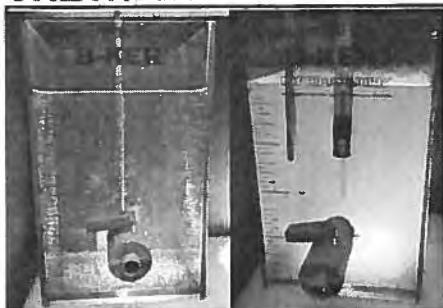
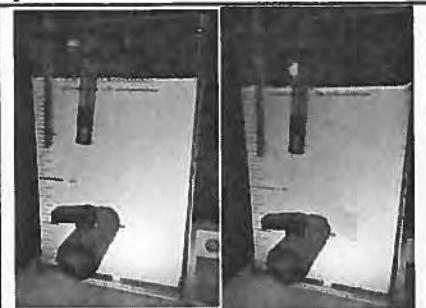


Photo 1: JT5.1 pre-test (Left); T0, post MgCl₂ and lime addition (Right).

Photo 2: JT5.1 10 min floc time (Left); 20 min floc time (Right).

Photo 3: JT5.1 30 min floc time (Left); 40 min floc time (Right).

Photo 4: JT5.1 50 min floc time (Left); 60 min floc time (Right).

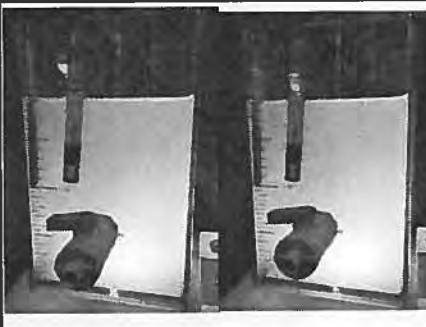


Photo 5: JT5.1 70 min floc time (Left); 80 min floc time (Right).

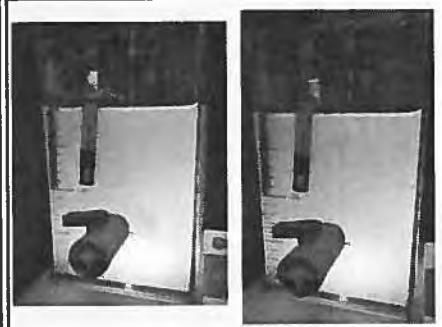


Photo 6: JT5.1 90 min floc time (Left); 100 min floc time (Right).

Photo 7: JT5.1 110 min floc time (Left); 120 min floc time (Right).

Photo 8: JT5.1 start of settling

Photo 9: JT5.1 15 min of settling (Left); 30 min of settling (Right).

Attachment C

OVERALL FACTORS

Copy Data From
Other Active CPES

Project Name and Project Type	
Project Name:	Longview
Project Number:	CPES/Longview
Project Manager:	Phelps
Estimator:	Odell
Project Description:	Option 1 - Precip

Markups		
Overhead:	8.00	Default: 10%
Profit:	5.00	Default: 5%
MoB/Bond/Insurance:	5.00	Default: 5%
Contingency:	25.00	Default: 30%

Default Factor		Project Location	
Project Location (Country):	USA	Project Location (State):	WASHINGTON
Project Location (City):	Vancouver WA	Location Adjustment Factor:	98.1
* Warning: Consult a CH2M professional cost estimator before using a location adjustment factor other than 100.0*			

Additional Project Costs	
To Calculator	
Demolition:	<input type="radio"/> <input type="radio"/> % <input type="radio"/> <input type="radio"/> LS
Overall Sitework:	<input type="radio"/> <input type="radio"/> % <input type="radio"/> <input type="radio"/> LS
Plant Computer System:	<input type="radio"/> <input type="radio"/> % <input type="radio"/> <input type="radio"/> LS
Yard Electrical:	<input type="radio"/> <input type="radio"/> % <input type="radio"/> <input type="radio"/> LS
Yard Piping:	<input type="radio"/> <input type="radio"/> % <input type="radio"/> <input type="radio"/> LS
User Defined Item 1:	Tax <input type="radio"/> <input type="radio"/> % <input type="radio"/> <input type="radio"/> LS
User Defined Item 2:	UD #2 Default Description <input type="radio"/> <input type="radio"/> % <input type="radio"/> <input type="radio"/> LS
User Defined Item 3:	UD #3 Default Description <input type="radio"/> <input type="radio"/> % <input type="radio"/> <input type="radio"/> LS

Cost Basis (Month/Year)	
Select Month:	January
Select Year:	2016
* Note: Select current month/year for which cost estimate is to be based.	
**Note: Provisions for escalating costs to the mid-point of construction have been removed from CPES and replaced with estimating the current value.	

Tax	
Tax is Applied to this Percent of Total Project Cost:	<input type="radio"/> <input type="radio"/> %
Tax Rate:	0.00 %

Non-Construction Costs	
Permitting:	0.00 %
Engineering:	10.00 %
Services During Construction:	7.00 %
Commissioning & Startup:	3.00 %
Land / ROW:	0.00 %
Legal / Admin:	0.00 %
Other:	Other Default Description <input type="radio"/> <input type="radio"/> % <input type="radio"/> <input type="radio"/> LS

No Pro2D
 With Pro2D

Configure CPES

Edit Process Li Reconfigure CPES

Import Pro2D Units

Liquids Train
Unit Process

Residuals Train
Unit Process

User Defined Facility									
Is This Facility Included in My Project? Yes									
Parametric Inputs		Value						User Comments	
EC and Power Units, Low	2.1 million								
EC and Power Units, High	3.2 million								
CMU Building 100' by 50'	5000 sq ft								
1 foot excavation									
Description		Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write	
SITEWORK:									
Excavation	185.19	CY	141.58	m3		\$6.35	\$1,176	02E	
Structural Backfill	185.19	CY	141.58	m3		\$48.10	\$8,907	02SB	
Backfill	0.00	CY	0.00	m3		\$7.80	\$0	02B	
Haul Excess	185.19	CY	141.58	m3		\$7.80	\$1,445	02HE	
Allowance for Misc Items	5%						\$11,528.09	\$578	
Subtotal								\$12,104	
CONCRETE:									
Foundation	55.56	CY	42.48	m3		\$393.82	\$21,888	03F	
Slab on Grade	185.19	CY	141.58	m3		\$356.31	\$65,983	03S	
Walls	0.00	CY	0.00	m3		\$704.01	\$0	03W	
Walls	0.00	CY	0.00	m3		\$704.01	\$0	03W	
Walls	0.00	CY	0.00	m3		\$704.01	\$0	03W	
Beams	0.00	CY	0.00	m3		\$1,121.35	\$0	03B	
Beams	0.00	CY	0.00	m3		\$1,121.35	\$0	03ES	
Elevated Slab	0.00	CY	0.00	m3		\$1,121.35	\$0	03ES	
Elevated Slab	0.00	CY	0.00	m3		\$1,121.35	\$0	03ES	
Allowance for Misc Items	5%						\$87,851	\$4,393	
Subtotal								\$92,244	
MASONRY:									
Type of Building Construction:	Moderata								
Building	5000.00	SF	484.52	m2		\$156.08	\$780,416	04BM	
Subtotal								\$780,416	
METALS:									
Grating	0.00	SF	0.00	m2		\$85.85	\$0	05G	
Handrail	0.00	LF	0.00	m		\$85.85	\$0	05H	
Stairs	0.00	Risers				\$488.25	\$0	05S	
Allowance for Misc Items	5%					\$0.00	\$0		
Subtotal								\$0	
WOOD & PLASTIC:									
Item 1	0.00	EA				\$0.00	\$0		
Item 2	0.00	EA				\$0.00	\$0		
Item 3	0.00	EA				\$0.00	\$0		
Item 4	0.00	EA				\$0.00	\$0		
Item 5	0.00	EA				\$0.00	\$0		
Allowance for Misc Items	5%							\$0	
Subtotal								\$0	
THERMAL & MOISTURE PROTECTION:									
Item 1	0.00	EA				\$0.00	\$0		
Item 2	0.00	EA				\$0.00	\$0		
Item 3	0.00	EA				\$0.00	\$0		
Item 4	0.00	EA				\$0.00	\$0		
Item 5	0.00	EA				\$0.00	\$0		
Roof Hatch (4' x 6' double leaf)	0.00	EA				\$2,809.50	\$0	07RH1	
Roof Hatch (2' x 2', double leaf)	0.00	EA				\$468.25	\$0	07RH2	
Allowance for Misc Items	5%					\$0.00	\$0		
Subtotal								\$0	
DOORS & WINDOWS:									
Item 1	0.00	EA				\$0.00	\$0		
Item 2	0.00	EA				\$0.00	\$0		
Item 3	0.00	EA				\$0.00	\$0		
Item 4	0.00	EA				\$0.00	\$0		
Item 5	0.00	EA				\$0.00	\$0		
Allowance for Misc Items	5%							\$0	
Subtotal								\$0	
EQUIPMENT:									
EC and Power - Mid Range Cost 2.65 million	1.00	EA				\$2,650,000.00	\$2,650,000		
Installation	1.00	EA				\$662,500.00	\$662,500		
Equipment Item 3	0.00	EA				\$0.00	\$0		
Equipment Item 4	0.00	EA				\$0.00	\$0		
Equipment Item 5	0.00	EA				\$0.00	\$0		
Equipment Item 6	0.00	EA				\$0.00	\$0		
Equipment Item 7	0.00	EA				\$0.00	\$0		
Equipment Item 8	0.00	EA				\$0.00	\$0		

Equipment Item 9	0.00	EA			\$0.00	\$0
Equipment Item 10	0.00	EA			\$0.00	\$0
Allowance for Misc Items	5%				\$3,312,500.00	\$165,625
Subtotal						\$3,478,125
I&C:						
50000.00	1.00	EA			\$50,000.00	\$50,000
Item 2	0.00	EA			\$0.00	\$0
Item 3	0.00	EA			\$0.00	\$0
Item 4	0.00	EA			\$0.00	\$0
Item 5	0.00	EA			\$0.00	\$0
Allowance for Misc Items	5%				\$50,000.00	\$2,500
Subtotal						\$52,500
CONVEYING SYSTEMS:						
Monorail Hoist (3 Ton)	1.00	EA			\$3,863.06	\$3,863 14MH
Hoist Rail	0.00	LF	0.00	m	\$39.02	\$0 14MIR
Allowance for Misc Items	5%				\$3,863.06	\$193
Subtotal						\$4,056
MECHANICAL:						
Allowance for Misc Items	1.00	EA			\$50,000.00	\$50,000
Equipment Item 2	0.00	EA			\$0.00	\$0
Equipment Item 3	0.00	EA			\$0.00	\$0
Equipment Item 4	0.00	EA			\$0.00	\$0
Equipment Item 5	0.00	EA			\$0.00	\$0
Equipment Item 6	0.00	EA			\$0.00	\$0
Equipment Item 7	0.00	EA			\$0.00	\$0
Equipment Item 8	0.00	EA			\$0.00	\$0
Equipment Item 9	0.00	EA			\$0.00	\$0
Equipment Item 10	0.00	EA			\$0.00	\$0
Allowance for Misc Items	5%				\$50,000.00	\$2,500
Subtotal						\$52,500
USER DEFINED ESTIMATE ITEMS:	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT	TOTAL COST
MCC Panels	15.00	0.00			\$4,000.00	\$60,000
Item 2 Description	0.00	0.00			\$0.00	\$0
Item 3 Description	0.00	0.00			\$0.00	\$0
Item 4 Description	0.00	0.00			\$0.00	\$0
Item 5 Description	0.00	0.00			\$0.00	\$0
Item 6 Description	0.00	0.00			\$0.00	\$0
Item 7 Description	0.00	0.00			\$0.00	\$0
Item 8 Description	0.00	0.00			\$0.00	\$0
Item 9 Description	0.00	0.00			\$0.00	\$0
Item 10 Description	0.00	0.00			\$0.00	\$0
Item 11 Description	0.00	0.00			\$0.00	\$0
Item 12 Description	0.00	0.00			\$0.00	\$0
Item 13 Description	0.00	0.00			\$0.00	\$0
Item 14 Description	0.00	0.00			\$0.00	\$0
Item 15 Description	0.00	0.00			\$0.00	\$0
Subtotal						\$60,000
Subtotal						\$4,531,945
ALLOWANCES:	User Override					
Finishes Allowance	2.00%				\$5,664,932	\$113,289
I&C Allowance	4.00%				\$5,664,932	\$226,597
Mechanical Allowance	10.00%				\$5,664,932	\$566,493
Electrical Allowance	4.00%				\$5,664,932	\$226,597
Facility Cost					\$5,664,932	
Facility Cost with Standard Additional Project Costs Added					\$5,664,932	
Facility Cost with Standard Additional Project Costs and Contractor Markups Added					\$8,432,016	
Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)					\$8,271,925	
Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added					\$8,271,925	

Circular Clarifier							
PROCESS DESIGN CRITERIA							
Is This Facility Included in My Project? Yes If this is a Seawater Desalination Application, the materials in contact with seawater need to be corrosion resistant.							
Process User Inputs	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
Circular Clarifier							
1) Is this a Seawater Desalination Application?	No	Y/N					
2) Has the USER Contacted Equipment Suppliers to Obtain Equipment Quotes?	No	Y/N					Fixed
3) Input Total Plant Flow	12.00	mgd	48.42	ML/d			
4) Input Number of Circular Clarifiers	1	#					
Calculate Flow per Clarifier	12.00	mgd	45,424.94	m3/d			
5) Input Clarifier Hydraulic Loading Rate	800.00	gpd/sf	117,348.00	m/d			Typically 400 to 800 gpd/sf for metal salt coagulation
Calculate Clarifier Diameter Each Based on Hydraulic Loading Rate	138.20	ft	42,122.65	mm			
6) Input Clarifier Side Water Depth	12.00	ft	3,657.60	mm			Typically 12 to 18 feet
7) Input Free Board	2.00	ft	609.60	mm			Typically 1 to 3 feet
Calculate Total Clarifier Depth	14.00	ft	4,267.20	mm			
8) Input Clarifier Wall Height above Grade	2.00	ft	609.60	mm			
Calculate Wall Burial Depth	12.00	ft	3,657.60	mm			
Clarifier Peripheral Weir Launder Sizing							
Convert Each Clarifier Flow Rate from MGD to CFS	18.57	cfs	525.75	l/s	Q_cfs		
9) Input Velocity	5.00	fps	1.52	m/s	V		Typically < 5 fps
Calculate Area (Q_cfs / V)	3.71	sf	0.34	m2			
Launder Freeboard	1.00	ft	304.80	mm			Fixed
10) Input Launder Width	2.00	ft	609.60	mm			
Calculate Launder Height Excluding Freeboard	1.86	ft	565.91	mm			
Calculate Launder Height Including Freeboard	2.86	ft	870.71	mm	OKAY		Should be ≤ 5 ft
Estimating Dimensions:	Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Comment	Red Flags
Total Number of Clarifiers	1	#					
Clarifier (dimensions per each):							
Perimeter Wall Inside Diameter	138.20	ft	42,122.65	mm			
Perimeter Wall Outside Diameter	140.20	ft	42,732.25	mm			
Perimeter Wall Height	14.00	ft	4,267.20	mm			
Wall Footer Thickness	16.00	in	406.40	mm		Model based on 16"	
Wall Footer Thickness	1.33	ft	406.40	mm		Model based on 6"	
Slab on Grade Thickness	6.00	in	152.40	mm			
Slab on Grade Thickness	0.50	ft	152.40	mm			
Center Cone Outside Diameter	8.17	ft	1,879.60	mm		Fixed	
Center Cone Inside Diameter	3.50	ft	1,068.80	mm		Fixed	
Center Cone Slab on Grade Thickness	16.00	in	406.40	mm		Model based on 16"	
Center Cone Slab on Grade Thickness	1.33	ft	406.40	mm			
Center Cone Wall Height	2.33	ft	710.18	mm		Model based on 2.33	
Center Cone Wall Thickness	16.00	in	406.40	mm		Model based on 16"	
Center Cone Wall Thickness	1.33	ft	406.40	mm			
Launder Elevated Slab Width	3.33	in	84.58	mm		Model based on 3.33	
Launder Elevated Slab Thickness	12.00	ft	3,657.60	mm			
Launder Elevated Slab Thickness	1.00	ft	304.80	mm		Model based on 12"	
Launder Wall Diameter	131.54	ft	40,092.68	mm			
Launder Wall Height	2.86	ft	870.71	mm			
Launder Wall Thickness	8.00	in	203.20	mm		Model based on 8"	
Launder Wall Thickness	0.87	ft	203.20	mm			
Perimeter Wall Thickness	12.00	in	304.80	mm		Model based on 12"	
Perimeter Wall Thickness	1.00	ft	304.80	mm			
Floor Slope Factor	1.03					Fixed	
Side Slope Depth Factor	0.23					Fixed	
Side Slope Factor	4.29					Fixed	
Excavation Diameter	149.20	ft	45,475.45	mm			
Cone Excavation Depth	17.37	ft	5,295.09	mm			
Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
SITEWORK:							
Clarifiers:							
Excavation	12,902	CY	9,864.42	m3	\$6.35	\$81,903	
Imported Structural Backfill	665	CY	508.62	m3	\$48.10	\$31,998	
Native Backfill	909	CY	695.10	m3	\$7.80	\$7,095	
Haul Excess	11,993	CY	9,169.32	m3	\$7.80	\$93,595	
Allowance for Misc Items	5%				\$214,592.05	\$10,730	
Subtotal						\$225,322	
CONCRETE:							
Clarifiers:							
Wall Footers	120	CY	91.46	m3	\$393.62	\$47,068	
Slanted Slab on Grade	285	CY	218.19	m3	\$393.62	\$112,336	
Slanted Floor Grout (2" thick)	15,411	SF	1,431.72	m2	\$22.27	\$34,316	
Center Cone Slab on Grade	1.47	CY	1.13	m3	\$393.62	\$581	
Center Cone Walls	2.23	CY	1.70	m3	\$704.01	\$1,569	
Perimeter Walls	228	CY	174.61	m3	\$704.01	\$160,779	
Launder Elevated Slab	54	CY	40.94	m3	\$1,121.35	\$60,044	
Launder Wall	29	CY	22.29	m3	\$704.01	\$20,520	
Concrete Fill	9	CY	6.82	m3	\$351.19	\$3,134	
Allowance for Misc Items	5%				\$749,221.27	\$37,461	
Subtotal						\$786,882	
METALS:							
Clarifiers:							
Walkway Grating (3 wide, steel support beams supplied by mechanism mfr)	421	SF	39.07	m2	\$85.85	\$33,106	
Walkway Handrail	280	LF	85.46	m	\$85.85	\$24,071	

Stairway	3	Risers			\$468.25	\$1,405
Allowance for Misc Items	10%				\$81,581.63	\$6,158
Subtotal						\$67,740
THERMAL & MOISTURE PROTECTION:						
Concrete Liner	0	SF	0.00	m2	\$16.00	\$0
Allowance for Misc Items	10%				\$0.00	\$0
Subtotal						\$0
EQUIPMENT:						
Clarifier Drive Mechanism	1	EA			\$209,285.80	\$209,285
Allowance for Misc Items	10%				\$209,285.80	\$20,928
Subtotal						\$230,214
USER DEFINED ESTIMATE ITEMS:						
Item 1 Description	0.00		0.00		0.00	\$0
Item 2 Description	0.00		0.00		0.00	\$0
Item 3 Description	0.00		0.00		0.00	\$0
Item 4 Description	0.00		0.00		0.00	\$0
Item 5 Description	0.00		0.00		0.00	\$0
Item 6 Description	0.00		0.00		0.00	\$0
Item 7 Description	0.00		0.00		0.00	\$0
Item 8 Description	0.00		0.00		0.00	\$0
Item 9 Description	0.00		0.00		0.00	\$0
Item 10 Description	0.00		0.00		0.00	\$0
Item 11 Description	0.00		0.00		0.00	\$0
Item 12 Description	0.00		0.00		0.00	\$0
Item 13 Description	0.00		0.00		0.00	\$0
Item 14 Description	0.00		0.00		0.00	\$0
Item 15 Description	0.00		0.00		0.00	\$0
Subtotal						\$0
Subtotal						\$1,309,958
ALLOWANCES:						
		User Override				
Finishes Allowance	2.00%		\$1,701,244		\$34,025	
I&C Allowance	8.00%		\$1,701,244		\$136,100	
Mechanical Allowance	5.00%		\$1,701,244		\$85,062	
Electrical Allowance	8.00%		\$1,701,244		\$136,100	
				Facility Cost Name		
Facility Cost	12,000,000	GPD	\$0.14	\$1,701,244	CCCF001	
Facility Cost with Standard Additional Project Costs Added	12,000,000	GPD	\$0.14	\$1,701,244	CCCF002	
Facility Cost with Standard Additional Project Costs and Contractor Markups Added	12,000,000	GPD	\$0.21	\$2,532,361	CCCF003	
Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	12,000,000	GPD	\$0.21	\$2,484,314	CCCF005	
Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	12,000,000	GPD	\$0.21	\$2,484,314	CCCF006	

Pump Station

3/4/2017
12:21 PM

In-Plant PS Pumps

Printed by:

In-Plant Pump Station								
Is This Facility Included in My Project? Yes								
Notes to Designer:								
<p>This mini-model is based on development of either a submersible or vertical turbine pump station with pumps less than 100 and 1,000 HP each, respectively. For larger HP pumps, get project specific pump and AFD budget quotes.</p> <p>If this is a Seawater Application, the materials in contact with seawater need to be corrosion resistant.</p>								
Process User Inputs:		Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
Input Pump Station Type		Submersible	Type			TYP		
Is This Facility Included in a Seawater Treatment Train?		No	Y/N					
Input Maximum Pump Station Flow		12.00	mgd	45.42	ML/d	Qmax		
Conversion of Maximum Pump Station Flow		18.57	cfs	525.75	L/s	Qmax, cfs		
Given: Pump Station Discharge Center Line = 0.00 ft								
Input Maximum Suction Lift for Vertical Turbine Pump Station or Wetwell		15.00	ft	4,572.00	mm	MSL		
Operating Water Depth for Submersible Pump Station		250.00	ft	76,200.00	mm	MDL		
Input Maximum Discharge Lift		5.00	fps	1.52	m/s	PSHV	OKAY	Typically 2 - 7 fps
Input Maximum Pump Station Yard Piping Discharge Header Velocity, and Individual Pump Discharge Lateral Velocity		26.09	in	662.75	mm	PSHD		
Calculate I-P S. Discharge Header Pipe Size		24.00	in	609.80	mm	PSHDS		
Use this Standard Diameter for Discharge Header Pipe Size		5.91	fps	1.80	m/s	maxPSHV		
Calculate Maximum PSH using real pipe size		3,000.00	ft	914,400.00	mm	LPSF		Confirm with Hydraulic Analysis
Input Length of I-P Pump Station Force Main		50.00	ft	15,240.00	mm	MPSF		Preliminary assumption of MPSF = 50% * LPSF
Input Equivalent Length of I-P Pump Station Force Main Minor Losses		110.00	ft	5594.29	mm	HWFC		Typically HWFC = 100.
Input Hazen Williams Pipe Friction Coefficient		18.35	ft			maxMDH		
Calculate Maximum High Service Water Force main Dynamic Headloss = (LPSF + MPSF) * 4.73 * (Q max, cfs)^1.85 / ((HWFC)^1.85 * PSHDS / 12)^4.87						Should be ≤ 25% of static lift. If > 25%, reduce velocity or increase static lift.		
Calculate Total Maximum Dynamic Headloss		283.35	ft	883,686.29	mm	maxTDH		Calculated
Input Pump Efficiency		75.00%				PE	OKAY	Typically 0.70 to 0.80
Wetwell								
Input Minimum Wet Well Detention Time		3.00	min					Typically minimum of 5 min for pump control
Calculate Wetwell Operational Capacity (each)		250,000.00	gal	94,64	m3			
Does Wet Well Have a Liner?		No	Y/N					
Calculate Wet Well Liner Surface Area		0.00	sf					
Is Pump Station Inside a Building?		Yes	Y/N					
Input Pump Information		Capacity (English)	Units (English)	Capacity (Metric)	Units (Metric)	AFD? (Yes or No)	Calculate Individual Pump GPM	Calculate Individual Pump BHP
Active Pump # 1		2.00	mgd	7.57	ML/d	No	1388.88	132.51
Active Pump # 2		0.00	mgd	0.00	ML/d	No	0.00	0.00
Active Pump # 3		0.00	mgd	0.00	ML/d	No	0.00	0.00
Active Pump # 4		0.00	mgd	0.00	ML/d	No	0.00	0.00
Active Pump # 5		0.00	mgd	0.00	ML/d	No	0.00	0.00
Active Pump # 6		0.00	mgd	0.00	ML/d	No	0.00	0.00
Active Pump # 7		0.00	mgd	0.00	ML/d	No	0.00	0.00
Active Pump # 8		0.00	mgd	0.00	ML/d	No	0.00	0.00
Active Pump # 9		0.00	mgd	0.00	ML/d	No	0.00	0.00
Active Pump # 10		0.00	mgd	0.00	ML/d	No	1388.88	132.51
Calculate Total Active Pumps Capacity		2.00				No	1388.88	132.51
Calculate Standby Pump Capacity = Max Pump		2.00					2777.76	265.01
Calculate Total P.S. Capacity		4.00						
Calculate Total Number of Pumps (Active & Standby)		3.50	ft	1,066.80	mm	PC	Fixed	
Process User Inputs:		Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
Calculate Pump Station Dimensions Based on Hydraulic Institute Standards (based on Largest Capacity Pump):								
Calculate Distance from Inlet Pipe to Back Wall of Wet Well Behind Pump		7.08	ft	2159.00	mm	A		
Calculate Distance from Pump Suction Centerline to Back Wall of Wet Well		1.25	ft	381.00	mm	B		
Calculate Distance from Wet Well Floor to Suction Bell		0.75	ft	228.60	mm	C		
Calculate Minimum Water Depth in Wet Well		4.83	ft	1473.20	mm	H		
Calculate Distance Between Pump Centerlines		5.00	ft	1524.00	mm	S		
Calculate Wet Well Width = S * (Total Number of Pumps)		10.00	ft	3048.00	mm	W		
Calculate Wet Well Length = Maximum of (PC * 2) or A		7.08	ft	2159.00	mm	LWW		
Wet Well Free Board		2.00	ft	609.80	mm	FB	Fixed	
Calculate Wet Well Side Water Depth = MSL + H - Discharge Flange - Elevated Slab - FB for Vertical Turbine or MSL for Submersible		15.00	ft	4572.00	mm			
Calculate Wet Well Water Volume		250,000.00	gal	94,64	m3	WWV		
Calculate Wet Well Volume to Largest Pump Capacity Ratio		18.00				WWV		Ratio should be 2 or greater
Wetwell Dimensions								
Calculate Pump Station Width		15.83	ft	4826.00	mm	WWW		
Calculate Pump Station Length		14.07	ft	4289.04	mm	WWL		
Calculate Wet Well Side Water Depth (based on pumps)		17.00	ft	5181.60	mm	SWD		
Influent Pipe & Motorized Gate Valve								
Input Maximum Influent Pipe Velocity		4.00	fps	1.22	m/s	IPV	Typically 2 - 7 fps	
Calculate I-P S Influent Pipe Size = [(Qmax, cfs/(PV^4/3PI^1/2)^1/2)]^12		29.17	in	740.98	mm	IPD		
Use this Standard Diameter for I-P S. Influent Pipe, and Gate Valve		30.00	in	762.00	mm	IPDS		
Discharge Header Pipe Vault:								
Input Clear Distance Around Discharge Header Pipe		3.00	ft	914.40	mm	DPC	Typically > = 3'	
Input Depth of Motor Control Center Equipment		2.00	ft	610.00	mm	MCC	Typically = 1' - 2.5'	
Maximum Velocity Through Discharge Header within Pump Station and Downstream Flow Meter Vault		12.00	fps	3.66	m/s	PDHV	Valid Range: ≤ 15 fps	

Calculate Discharge Header Diameter within Pump Station $= [(Q_{max}, cfs/PDH)^4/(\pi)^2]^{1/2}/12$	16.84	in	427.81	mm	PDHD		
Use this Standard Diameter for Discharge Header Diameter within Pump Station	16.00	in	406.40	mm	FCVSD		
Pump Station Depth of Burial:							
Input Pump Station Depth of Burial	2.00	ft	60.960	mm	DB		
Input Cutback Slope	1.00	1					Cutback slope should be 1 for depth of burial ≤ 5 ft, at least 1.5:1 for depth of burial > 5 ft.
Input Over Excavation Depth	1.00	ft	0.00	mm	OEXD		
Estimating Dimensions:	Value English	Unit (English)	Name	Unit (Metric)	Name	Red Flags	Comment
Wetwell:							
Width	15.83	ft	4826.00	mm	W		
Length = LWW	14.07	ft	4289.04	mm	LWW		
Wall Height = MSL + H	17.00	ft	5181.60	mm			
Slab on Grade Width	19.83	ft	6045.20	mm			
Slab on Grade Length	18.07	ft	5508.24	mm			
Slab on Grade Thickness	12.00	in	304.80	mm			Model based on 12"
Slab on Grade Thickness	1.00	ft	304.80	mm			
Wall Thickness	12.00	in	304.80	mm	TWW		Model based on 12"
Wall Thickness	1.00	ft	304.80	mm			
Discharge Header Pipe Vault							
Width	15.83	ft	4826.00	mm			
Length = Discharge Header Pipe Diameter + (Clearance Around Pipe * 2)	10.00	ft	3048.00	mm	LDHPV		
+ Depth of Motor Control Center Equipment							
Wall Height = Discharge Header Pipe Diameter + (Clearance Around Pipe * 2)	8.00	ft	2438.40	mm	HDHPV		
Slab on Grade Width	19.83	ft	6045.20	mm			
Slab on Grade Length	12.00	ft	3657.60	mm			
Slab on Grade Thickness	12.00	in	304.80	mm			Model based on 12"
Slab on Grade Thickness	1.00	ft	304.80	mm			
Wall Thickness	12.00	in	304.80	mm			Model based on 12"
Wall Thickness	1.00	ft	304.80	mm			
Operating Floor							
Width	15.83	ft	4826.00	mm			
Elevated Slab Width	17.83	ft	5435.60	mm			
Elevated Slab Length = LWW + LDHV + (TWW * 3)	27.07	ft	8251.44	mm			
Elevated Slab Thickness	12.00	in	304.80	mm			Model based on 12"
Elevated Slab Thickness	1.00	ft	304.80	mm			
Overall Dimensions:							
Building Width	17.83	ft	5435.60	mm			
Building Length	27.07	ft	8251.44	mm			
Building Depth	17.00	ft	5181.60	mm			
Excavation Width	19.83	ft	6045.20	mm			
Excavation Length	18.07	ft	5508.24	mm			
Excavation Depth	5.00	ft	1524.00	mm			
Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
SITEWORK:							
Excavation	113.85	CY	88.89	m ³	\$6.35	\$721	
Imported Structural Backfill	26.55	CY	20.30	m ³	\$48.10	\$1,277	
Native Backfill	35.10	CY	28.83	m ³	\$7.80	\$274	
Haul Excess	78.55	CY	60.06	m ³	\$7.80	\$813	
Allowance for Misc Items	5%				\$2,885.39	\$144	
Subtotal						\$3,030	
CONCRETE:							
<i>Wet Well:</i>							
Foundation	13.27	CY	10.15	m ³	\$393.62	\$5,225	
Perimeter Walls	47.73	CY	38.49	m ³	\$704.01	\$33,804	
<i>Operating Floor:</i>							
Elevated Slab (Including floor over Discharge Header Vault)	17.88	CY	13.67	m ³	\$1,121.35	\$20,050	
Pump Pads	0.53	CY	0.40	m ³	\$356.31	\$188	
Other Equipment Pads	1.00	CY	0.76	m ³	\$356.31	\$356	
<i>Discharge Pipe Vault:</i>							
Slab on Grade	8.81	CY	6.74	m ³	\$356.31	\$3,141	
Walls	12.99	CY	9.93	m ³	\$704.01	\$9,143	
Allowance for Misc Items	5%				\$71,707.64	\$3,585	
Subtotal						\$75,293	
MASONRY:	Moderate						
CMU Building	482.78	SF	44.85	m ²	\$156.08	\$75,353	
Subtotal						\$75,353	
METALS:							
Checker Plate Over Intake Pipe Gate = (Diameter of Influent Pipe +2") * (2 Feet Wide) (sf)	9.00	SF	0.84	m ²	\$85.85	\$773	
Checker Plate Over Discharge Pipe Header = ((Discharge Pipe Diameter * 2) * ("S" * Total Number of Pumps))	40.00	SF	3.72	m ²	\$85.85	\$3,434	
Ladder	17.00	VLF	5.18	VLM	\$117.84	\$2,003	
Allowance for Misc Items	10%				\$8,209.77	\$821	
Subtotal						\$8,831	
THERMAL & MOISTURE PROTECTION:							
Wet Well Liner	0.00	SF	0.00	m ²	\$16.00	\$0	
Allowance for Misc Items	10%				\$0.00	\$0	
Subtotal						\$0	

							Budgetary Quote: (CPES will automatically add Installation Factor)
EQUIPMENT:							
Size of Sluice Gate (per side in inches)	30.00	in	762.00	mm			
Sluice Gate	1	EA				\$10,742.68	\$10,743
Pumps:							
Active Pump # 1	132.51	hp	98.81	kW		\$744.89	\$98,676
Active Pump # 2	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 3	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 4	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 5	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 6	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 7	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 8	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 9	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 10	0.00	hp	0.00	kW		\$0.00	\$0
Standby Pump	132.51	hp	98.81	kW		\$744.89	\$98,676
AFD's							
Active Pump # 1	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 2	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 3	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 4	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 5	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 6	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 7	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 8	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 9	0.00	hp	0.00	kW		\$0.00	\$0
Active Pump # 10	0.00	hp	0.00	kW		\$0.00	\$0
Standby Pump	0.00	hp	0.00	kW		\$0.00	\$0
Allowance for Misc Items	10%					\$197,352.39	\$19,735
Subtotal							\$227,830
USER DEFINED ESTIMATE ITEMS:	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT	TOTAL COST	
Item 1 Description	0.00		0.00		0.00	\$0	
Item 2 Description	0.00		0.00		0.00	\$0	
Item 3 Description	0.00		0.00		0.00	\$0	
Item 4 Description	0.00		0.00		0.00	\$0	
Item 5 Description	0.00		0.00		0.00	\$0	
Item 6 Description	0.00		0.00		0.00	\$0	
Item 7 Description	0.00		0.00		0.00	\$0	
Item 8 Description	0.00		0.00		0.00	\$0	
Item 9 Description	0.00		0.00		0.00	\$0	
Item 10 Description	0.00		0.00		0.00	\$0	
Item 11 Description	0.00		0.00		0.00	\$0	
Item 12 Description	0.00		0.00		0.00	\$0	
Item 13 Description	0.00		0.00		0.00	\$0	
Item 14 Description	0.00		0.00		0.00	\$0	
Item 15 Description	0.00		0.00		0.00	\$0	
Subtotal							\$388,337
Subtotal							
ALLOWANCES:	User Override						
Finishes Allowance	2.00%				\$776,674	\$15,533	
I&C Allowance	8.00%				\$776,674	\$62,134	
Mechanical Allowance	25.00%				\$776,674	\$194,169	
Electrical Allowance	15.00%				\$776,674	\$116,501	
Facility Cost	265	Total Pump HP	\$2,930.70		\$776,674		
Facility Cost with Standard Additional Project Costs Added	265	Total Pump HP	\$2,930.70		\$776,674		
Facility Cost with Standard Additional Project Costs and Contractor Markups Added	265	Total Pump HP	\$4,362.45		\$1,156,107		
Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	265	Total Pump HP	\$4,279.68		\$1,134,172		
Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	265	Total Pump HP	\$4,279.68		\$1,134,172		

User Defined Facility

Parametric Inputs		Value	User Comments				
Cost Estimate							
Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
SITEWORK:							
Excavation	0.00	CY	0.00	m3	\$0.35	\$0 02E	
Structural Backfill	0.00	CY	0.00	m3	\$48.10	\$0 02SB	
Backfill	0.00	CY	0.00	m3	\$7.80	\$0 02B	
Haul Excess	0.00	CY	0.00	m3	\$7.80	\$0 02HE	
Allowance for Misc Items	5%				\$0.00	\$0	
Subtotal						\$0	
CONCRETE:							
Foundation	0.00	CY	0.00	m3	\$393.82	\$0 03F	
Slab on Grade	0.00	CY	0.00	m3	\$358.31	\$0 03S	
Walls	0.00	CY	0.00	m3	\$704.01	\$0 03W	
Walls	0.00	CY	0.00	m3	\$704.01	\$0 03W	
Walls	0.00	CY	0.00	m3	\$704.01	\$0 03W	
Beams	0.00	CY	0.00	m3	\$1,121.35	\$0 03B	
Beams	0.00	CY	0.00	m3	\$1,121.35	\$0 03B	
Elevated Slab	0.00	CY	0.00	m3	\$1,121.35	\$0 03ES	
Elevated Slab	0.00	CY	0.00	m3	\$1,121.35	\$0 03ES	
Allowance for Misc Items	5%				\$0.00	\$0	
Subtotal						\$0	
MASONRY:							
Type of Building Construction:	Moderate						
Building	0.00	SF	0.00	m2	\$156.08	\$0 04BM	
Subtotal						\$0	
METALS:							
Grating	0.00	SR	0.00	m2	\$85.85	\$0 05G	
Handrail	0.00	LF	0.00	m	\$85.85	\$0 05H	
Stairs	0.00	Risers			\$488.25	\$0 05S	
Allowance for Misc Items	5%				\$0.00	\$0	
Subtotal						\$0	
WOOD & PLASTIC:							
Item 1	0.00	EA			\$0.00	\$0	
Item 2	0.00	EA			\$0.00	\$0	
Item 3	0.00	EA			\$0.00	\$0	
Item 4	0.00	EA			\$0.00	\$0	
Item 5	0.00	EA			\$0.00	\$0	
Allowance for Misc Items	5%				\$0.00	\$0	
Subtotal						\$0	
THERMAL & MOISTURE PROTECTION:							
Item 1	0.00	EA			\$0.00	\$0	
Item 2	0.00	EA			\$0.00	\$0	
Item 3	0.00	EA			\$0.00	\$0	
Item 4	0.00	EA			\$0.00	\$0	
Item 5	0.00	EA			\$0.00	\$0	
Roof Hatch (4' x 6', double leaf)	0.00	EA			\$2,809.50	\$0 07RH1	
Roof Hatch (2' x 2', double leaf)	0.00	EA			\$488.25	\$0 07RH2	
Allowance for Misc Items	5%				\$0.00	\$0	
Subtotal						\$0	
DOORS & WINDOWS:							
Item 1	0.00	EA			\$0.00	\$0	
Item 2	0.00	EA			\$0.00	\$0	
Item 3	0.00	EA			\$0.00	\$0	
Item 4	0.00	EA			\$0.00	\$0	
Item 5	0.00	EA			\$0.00	\$0	
Allowance for Misc Items	5%				\$0.00	\$0	
Subtotal						\$0	
EQUIPMENT:							
Equipment Item 1	0.00	EA			\$0.00	\$0	
Equipment Item 2	0.00	EA			\$0.00	\$0	
Equipment Item 3	0.00	EA			\$0.00	\$0	
Equipment Item 4	0.00	EA			\$0.00	\$0	
Equipment Item 5	0.00	EA			\$0.00	\$0	
Equipment Item 6	0.00	EA			\$0.00	\$0	
Equipment Item 7	0.00	EA			\$0.00	\$0	
Equipment Item 8	0.00	EA			\$0.00	\$0	

Dewatering

Centrifuge Solids Dewatering Facility							
Is This Facility Included in My Project? Yes							
Process User Inputs:	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
Dry Solids Production							
Input Design Plant Flow Rate	12.00	mgd	46.42	ML/d			Enter plant flow rate for which dewatering equipment/system shall be sized.
Input Average Annual Plant Flow Rate	4.00	mgd	18.14	ML/d			Enter plant flow rate for calculating average annual production of solids.
Input Design Raw Water Turbidity	1.00	NTU					Enter raw water turbidity for which dewatering equipment/system shall be sized.
Input Average Annual Raw Water Turbidity	1.00	NTU					Enter raw water turbidity for calculating average annual production of solids
Input Fraction of Turbidity to Contribute to Solids	1.00	mg/L/NTU					Typically 1 to 2
Input Design Raw Water Color	1.00	CU					Enter raw water color for which dewatering equipment/system shall be sized.
Input Average Annual Raw Water Color	1.00	CU					Enter raw water color for calculating average annual production of solids.
Input Fraction of Color to Contribute to Solids	0.05	mg/L/CU					Typically 0.02 to 0.1
Select Coagulant Used for Raw Water	Aluminum Sulfate	Type					Enter coagulant dose for which dewatering equipment/system shall be sized.
Input Design Coagulant Dose	40.00	mg/L					Enter coagulant dose for calculating average annual production of solids.
Input Average Annual Coagulant Dose	40.00	mg/L					Typical Value = 0.44 based on 3 waters of hydration for the most probable solid <chem>Al(OH)3·3H2O</chem> .
Fraction of Coagulant to Contribute to Solids	0.44						
Optional: Input Fraction of Coagulant to Contributes to Solids (overwrites above calculations)							
Input Total Design Polymer Dose (coagulation, flocculation, filter aids)		mg/L					Enter polymer dose for which dewatering equipment/system shall be sized.
Input Total Average Annual Polymer Dose (coagulation, flocculation, filter aids)		mg/L					Enter polymer dose for calculating average annual production of solids.
Input Design Raw Water Iron	2.00	mg/L					Enter raw water iron for which dewatering equipment/system shall be sized.
Input Average Annual Raw Water Iron	1.00	mg/L					Enter raw water iron for calculating average annual production of solids.
Input Iron Factor that Contributes to Solids	2.00	mg/L					Typical Value = 2
Input Design Raw Water Manganese	0.50	mg/L					Enter raw water manganese for which dewatering equipment/system shall be sized.
Input Average Annual Raw Water Manganese	0.50	mg/L					Enter raw water manganese for calculating average annual production of solids.
Input Manganese Factor that Contributes to Solids	2.00	mg/L					Typical Value = 2
Input Design PAC Dose		mg/L					Enter PAC dose for which dewatering equipment/system shall be sized.
Input Average Annual PAC Dose		mg/L					Enter PAC dose for calculating average annual production of solids.
Input Design Carbonate Hardness Concentration to be Removed via Softening	40.00	mg/L as CaCO3					Enter carbonate hardness removed for which dewatering equipment/system shall be sized.
Input Average Annual Carbonate Hardness Concentration to be Removed via Softening		mg/L as CaCO3					Enter carbonate hardness removed for calculating average annual production of solids.
Input Carbonate Hardness Factor that Contributes to Solids	1.00	(mg of softening solids produced per mg of hardness removed)					Typical Value = 1 for sodium hydroxide softening, 2 for lime softening.
Input Design Non-Carbonate Hardness Concentration to be Removed via Softening	40.00	mg/L as CaCO3					Enter non-carbonate hardness removed for which dewatering equipment/system shall be sized.
Input Average Annual Non-Carbonate Hardness Concentration to be Removed via Softening	40.00	mg/L as CaCO3					Enter non-carbonate hardness removed for calculating average annual production of solids.
Input Non-Carbonate Hardness Factor that Contributes to Solids	1.00	(mg of softening solids produced per mg of hardness removed)					Typical Value = 1 for sodium hydroxide softening, 1 for soda ash softening.
Calculate Design Solids Removed	103.55	mg/L					
Calculate Design Daily Dry Solids Production	103.73.29	lb/d	4705.25	kg/d			Calculated on a dry weight basis
Optional: Input Design Daily Dry Solids Production (overwrites above calculations)		lb/d	0.00	kg/d			Overrides cell above. Calculated on a dry weight basis.
Calculate Average Annual Solids Removed	61.65	mg/L					
Calculate Average Annual Daily Dry Solids Production	2056.64	lb/d	932.88	kg/d			Calculated on a dry weight basis
Optional: Input Average Annual Daily Dry Solids Production (overwrites above calculations)		lb/d	0.00	kg/d			Overrides cell above. Calculated on a dry weight basis
Centrifuge Dewatering Sizing		%					
Input % Dry Solids in Sludge to Centrifuges	2.00%	%					Typically from Gravity Thickener at 2% to 5%
Input Number of Days per Week Centrifuges Will Be Operated	5.00	days					1 to 7, often 5 days
Input Number of Hours per Day Centrifuges Will Be Operated	8.00	hours					1 to 24, often 8 hours
Calculate Required Gravity Thickener Dry Solids Storage (dry)	27562.11	lb	12547.32	kg			
Calculate Thickened Sludge Density	B3.12	lb/cf	1011.07	kg/m3			
Calculate Required Gravity Thickener Sludge Storage Volume	21012.62	cf	620.50	m3			
Calculate Required Gravity Thickener Sludge Storage Volume	163917.80	gal	620.50	m3			For Information: see cell C34 in the Gravity Thickener model for the volume (in gallons) of sludge.
Calculate Required Centrifuge Dewatering Rate	179.29	gpm	40.72	m3/hr			
Input Number of Duty Centrifuges	1	#					Toggle number of duty centrifuges to select optimum centrifuge configuration
Input Number of Standby Centrifuges	1	#					Typically 0 or 1

Total Number of centrifuges	2	#				
Loading, hydraulic (each)	179.20	gpm	40.72	m3/hr		
Loading, dry solids (each)	1815.33	lb/hr	823.42	kg/hr		
Centrifuge Selection						
Input Sludge Type	Ferric					
Case No	2.00					Number used for selection of centrifuge
Expected Feed Solids	1.35% DS					
Polymer Consumption	15.30 lb/ton DS					DS = dry solids
Cake Solids	20-25% DS					DS = dry solids
Capture Efficiency	95.00%					
Centrifuge Selection	4.00					Number used for selection of centrifuge
Model No (Andritz)	D5					The service numbers for each model have a level of conservatism already in them.
Capacity	135	gpm	30.68	m3/hr		Contact Andritz for actual model selection. There are several versions of each model that changes the capacity ranges for each
Bowl Diameter	20.50	in	520.70	mm		
Length	180.00	in	4572.00	mm		
Width	52.00	in	1320.80	mm		
Height	62.00	in	1574.80	mm		
Power, Main Drive	100.00	hp	74.57	kW		
Power, Back Drive	20.00	hp	14.91	kW		
Weight	14766.00	lb	6697.74	kg		Be sure to provide access to the centrifuges on the second floor
Chemical Storage and Feed						
Input Chemical Name	Liquid Polymer	Type				Typically Liquid Polymer, but if Dry Polymer is used, use the Dry Polymer Model
Is this Chemical System to be Included?	Yes	Y/N				
Input Percent Active Chemical	40.00%	%				If Liquid Polymer, typically 30% to 50%
Input Bulk Chemical Specific Gravity	1.10	#				If Liquid Polymer, typically 1.1
Active Chemical Concentration, lb/gallon	3.67	lb/gal	439.71	kg/m3		
Choose Chemical Delivery Method	Total	Type				
Bulk Delivery Volume (Tank Truck, Totes, Drums), gallons	300.00	gal	1.14	m3		
Input Number of Simultaneous Application Points	1	#				
CHEMICAL DOSES:						
Input Minimum Dose (per ton of dry solids)	10.00	lb/t	6.80	kg/t		Typically 5 to 15 lb dry polymer per ton of dry solids (2.5 to 7.5 kg/t).
Input Average Dose (per ton of dry solids)	15.00	lb/t	9.07	kg/t		Typically 10 to 20 lb dry polymer per ton of dry solids (5.0 to 10.0 kg/t).
Input Maximum Dose (per ton of dry solids)	20.00	lb/t	11.34	kg/t		Typically 15 to 25 lb dry polymer per ton of dry solids (7.5 to 12.5 kg/t).
Minimum Chemical Usage	72.61	lb/d	32.94	kg/d		Usage rate on operating days.
Average Chemical Usage	108.92	lb/d	49.41	kg/d		Usage rate on operating days.
Maximum Chemical Usage	145.23	lb/d	65.87	kg/d		Usage rate on operating days.
Chemical Metering Rates per Simultaneous Operating Pump:						
Minimum Rate	2.47	gph	9.36	l/h		Usage rate when operating.
Average Rate	3.71	gph	14.04	l/h		Usage rate when operating.
Maximum Rate	4.95	gph	18.73	l/h		Usage rate when operating.
Calculate Chemical Metering Pump Flow Turndown (should be < 20, if > 20, proceed with caution)	2.00	1				Should be < 20, if ≥ 20, proceed with caution.
Input Number of Days of Storage at Avg. Flow/Dose for Chemical	30.00	days				Includes non-operating days.
Calculate Number of Operating Days of Storage	21.43	days				Includes only operating days.
Calculate Storage Volume for Pretreatment (Avg. Flow/Dose)	636.03	gal	2.41	m3		
Calculate Bulk Delivery Volume * 1.5 (for Truck Delivery Only)	0.00	gal	0.00	m3		
Maximum of Above Two Volumes	636.03	gal	2.41	m3		
Maximum Volume in	85.03	cf	2.41	m3		
BULK TANKS						
Input Number of Tanks	0	#				
Input Tank Diameter	10.00	ft	3,048.00	mm		
Calculate Height of Tanks	0.00	ft	0.00	mm		
Use this Tank Height (Liquid Height * 1.2)	0.00	ft	0.00	mm		
Input Number of Rows of Tanks	1	#				
Calculate Number of Tanks per Row	0	#				
Input Tank Material (FRP, PE (Polyethylene), PLS (Phenolic Lined Steel))	FRP	Type				
Input Clear Distance Around Bulk Tanks, Totes or Drums	4.00	ft	1,219.20	mm	CDT	
TOTES & DRUMS:						
Calculate Number of Totes or Drums	3	each				
Will Totes or Drums be Stored by Stacking on Top of Each Other?	No	Y/N				
Input Number of Rows of Totes or Drum Pallets	1	#				
Calculate Number of Totes or Drum Pallets on Floor per Row	3.00	#				
Length of Each Tote	4.00	ft	1219.20	mm		Fixed
Width of Each Tote	4.00	ft	1219.20	mm		Fixed
Length and Width of Each Drum Pallet	5.00	ft	1524.00	mm		Fixed
CHEMICAL FEED SYSTEMS:						
Select Chemical Feed Method	Polymer Blend Unit	Type				If using polymer, a Polymer Blend Unit is recommended
Calculate Number of Active Chemical Feed Systems	1	#				
Input Number of Standby Chemical Feed Systems	1	#				
Calculate Total Number of Chemical Feed Systems	2	#				
Input Clear Distance Around Chemical Feed Systems	4.00	ft	1,219.20	mm		
Length of Chemical Feed Systems	2.50	ft	762.00	mm		
Width of Chemical Feed Systems	3.33	ft	1015.90	mm		
Width of Stair Access	3.50	ft	1068.80	mm		Fixed
CONTAINMENT AREA:						
Calculate Containment Area Internal Length	28.00	ft	8534.40	mm		
Calculate Containment Area Internal Width	26.00	ft	7924.80	mm		
Calculate Fire Sprinkler Water Volume (0.2 gpm/sf for 20 min)	2912.60	gal	11.02	m3		

Calculate 120% of One Storage Tank Volume	350.00	gal	1.38	m3			
Calculate 30% of All Tank Volume	90.00	gal	0.34	m3			
Maximum of Above Two Volumes	360.00	gal	1.38	m3			
Calculate Maximum Volume + Fire Flow Volume	3272.00	gal	12.39	m3			
Calculate Maximum Volume + Fire Flow Volume	437.40	cf	12.39	m3			
Calculate Containment Wall Height (including 5' Freeboard)	1.10	ft	335.53	mm			
Dewatering Building							
Truck Lane Length	60.00	ft	20,726.40	mm	DWB-TLL		Typically 60 ft for full container truck or roll-off
Truck Lane Width	20.00	ft	6,096.00	mm	DWB-TLW		Typically ≥ 16 ft for full container truck or roll-off
First Floor Height	24.00	ft	7,315.20	mm	DWB-FFH		Typically ≥ 22 ft
Number of Truck Lanes	2.00	#			CN-OS		Typically 2
Offset Between Centrifuges	5.00	ft	1,824.00	mm	CN-OEW		Typically ≥ 4 ft for access
Centrifuge Offset from Wall (width direction in relationship to the centrifuges)	5.00	ft	1,824.00	mm	CN-ONW		Typically ≥ 4 ft for access
Centrifuge Offset from Wall (length direction in relationship to centrifuges)	17.00	ft	5,181.60	mm			Typically = 17 ft for proper alignment over truck bays
Input Stair Tread Width	3.50	ft	1,068.80	mm			Typically ≥ 3.5 ft
Calculate Stairwell Width	8.00	ft	2438.40	mm	DWB-SW		
Calculate Stairwell Length	25.50	ft	7772.40	mm	DWB-SL		
Dewatering Building Width	68.67	ft	20929.60	mm	DWB-W		
Dewatering Building Length	77.50	ft	23622.00	mm	DWB-L		
Conveyor Equipment							
Centrifuge Conveyor Length	0.00	ft	0.00	mm	CON-CNL		
Centrifuge Conveyor Width or Diameter	10.00	in	254.00	mm	CON-CNW		Verify with conveyor vendor
Conveyor Truck Lane Length	40.00	ft	12,192.00	mm	CON-TLL		Typically 40 ft
Calculate Conveyor Truck Lane Width	10.00	in	254.00	mm	CON-TLW		
% Dry Solids Capture by Centrifuge	95.00%						
% Dry Solids in Centrifuge Cake	20.00%						
Calculate the Centrifuge Dry Solids Production Rate (dry)	1724.56	lb/hr	782.25	kg/hr			
Calculate the Cake Density	70.42	lb/cf	1128.07	kg/m3			Assumes density of dried solids of 145 lb/cf
Calculate the Centrifuge Cake Solids Production Rate	9622.60	lb/hr	3911.24	kg/hr			
Calculate Truck Loads	0.18	per hour					
Calculate the Centrifuge Cake Volume Production Rate	122.44	cf/hr	3.47	m3/hr			
Calculate Total Yearly Wet Mass of Sludge (per year)	8992.35	tons	8157720.07	kg			
Calculate Total Design Yearly Wet Sludge Volume	9458.50	cy	7231.54	m3			
Calculate Average Annual Wet Sludge Volume	1675.27	cy	1433.75	m3			
Calculate Number of Gates per Truck Conveyor	8	#					Assumes 6 ft on center
Input Depth of Burial		ft	0.00	mm	DB		
Input Cutback Slope	1.00	1					Cutback slope should be 1:1 for depth of burial ≤ 5 ft, and at least 1:1.5 for depth of burial > 5 ft.
Input Over Excavation Depth	1.00	ft	0.00	mm	OEXD		
Mechanical Sizing Requirements:							
Pipe Name	Input Velocity	Unit (English)	Input Velocity	Unit (Metric)	Standard Pipe Size	Unit (English)	Nominal Pipe Size
Centrifuge Feed Header	5.00	fps	1.52	m/s	4.00	in	100.00
Centrifuge Feed Lateral	5.00	fps	1.52	m/s	4.00	in	100.00
Centrifuge Drain Lateral/Header	5.00	fps	1.52	m/s	4.00	in	100.00
Centrifuge Decant Header	5.00	fps	1.52	m/s	4.00	in	100.00
Centrifuge Decant Lateral	5.00	fps	1.52	m/s	4.00	in	100.00
Mechanical Material Requirements:							
Pipe Name	Pipe ID	Installation Type	Pipe Material	Pipe Lining Material	Pipe Coating Material	Comments	Red Flags
Centrifuge Feed Header	CFH	Exposed	DI	Cement Mortar	Paint		
Centrifuge Feed Lateral	CFL	Exposed	Steel	Cement Mortar	Paint		
Centrifuge Drain Lateral/Header	CD	Exposed	Steel	Cement Mortar	Paint		
Centrifuge Decant Header	CDH	Exposed	Steel	Cement Mortar	Paint		
Centrifuge Decant Lateral	CDL	Exposed	Steel	Cement Mortar	Paint		
Electrical User Inputs and Sizing Requirements:							
Is this a "Critical" Facility (requiring standby power)?	No	Y/N					
Is there SWGR?	No						
Electrical Equipment Lengths:							MCC
Item	Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 50hp	MCC Spaces for Breakers	Total MCC Spaces
Centrifuges (Active)	1	100.00	No	3.00	0.00	0.00	
Centrifuges (Standby)	1	100.00	No	3.00	0.00	0.00	
Centrifuge Conveyor Belt	0	3.00	No	0.00	0.00	0.00	
Truck Conveyor Belt	2	3.00	No	4.00	0.00	0.00	
User Defined Item #1	0	0.00	No	0.00	0.00	0.00	
User Defined Item #2	0	0.00	No	0.00	0.00	0.00	
TOTAL		206.0		10.00	0.00	0.00	10.00
Electrical Equipment Widths:							
Equipment	Depth (ft)						
MCC	1.67						
Small AFD's	0.00						
Large AFD's	0.00						
Switchgear	0.00						
Maximum Depth	1.67						
Clear Distances:							
Clear Distance	Width	Length	Comment				
CD1		3.00	Clear Distance between wall and MCC.				
CD2		1.00	Clear Distance between MCC and Small AFD.				
CD3		0.00	Clear Distance between Small AFD and Large AFD.				
CD4		0.00	Clear Distance between Large AFD and Switchgear.				

CD5		0.00	Clear Distance between Switchgear and Contingency Space	Typically Zero			
CD6	4.00		Clear Distance behind Switchgear (if there is no Switchgear, this distance will be Zero)				
CD7	3.00		Clear Distance in front of Equipment	Typically 3 feet			
Contingency Length		0.00	Contingency length	Typically Zero			
Electric Room Length (ft):							
CD1	3.00						
MCC	8.33						
CD2	1.00						
Small AFD's	0.00						
CD3	0.00						
Large AFD's	0.00						
CD4	0.00						
Switchgear	0.00						
CD5	0.00						
Contingency	0.00						
Total Length	12.33						
Electric Room Width (ft):							
CD6	0.00		If there is no switchgear, this distance will be Zero.				
Maximum Equipment Depth	1.67						
CD7	3.00						
Total Width	4.67						
Estimating Dimensions:	Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
Centrifuge Building							
Building Length	77.50	ft	23622.00	mm			
Building Width	68.67	ft	20929.60	mm			
Slab on Grade Length	81.50	ft	24841.20	mm			
Slab on Grade Width	72.67	ft	22148.60	mm			
Excavation Length	85.50	ft	26060.40	mm			
Excavation Width	78.67	ft	23368.00	mm			
Excavation Depth	3.50	ft	1066.80	mm			
Stair Height	24.00	ft	7315.20	mm			
Slab on Grade Thickness	18.00	in	457.20	mm			Model based on 18"
Slab on Grade Thickness	1.50	ft	457.20	mm			
Wall Thickness	12.00	in	304.80	mm			Model based on 12"
Wall Thickness	1.00	ft	304.80	mm			
Elevated Slab Thickness	12.00	in	304.80	mm			Model based on 12"
Elevated Slab Thickness	1.00	ft	304.80	mm			
Chemical Containment Wall Thickness	8.00	in	203.20	mm			
Chemical Containment Wall Thickness	0.67	ft	203.20	mm			
Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
SITEWORK							
Excavation	1034.09	CY	790.62	m ³	\$8.35	\$6,564	
Imported Structural Backfill	485.56	CY	371.23	m ³	\$48.10	\$23,355	
Native Backfill	73.58	CY	56.25	m ³	\$7.80	\$574	
Haul Excess	960.52	CY	734.37	m ³	\$7.80	\$7,496	
Allowance for Misc Items	5%				\$37,989.65	\$1,899	
Subtotal						\$39,889	
CONCRETE							
Centrifuge Building Slab on Grade	328.02	CY	251.55	m ³	\$368.31	\$117,232	
Elevated Slab	208.07	CY	159.06	m ³	\$1,121.36	\$233,324	
Equipment Pads	6.32	CY	4.83	m ³	\$366.31	\$2,252	
Allowance for Misc Items	5%				\$352,808.12	\$17,640	
Subtotal						\$370,449	
MASONRY							
Moderate							
CMU Building	10643.33	SF	988.80	m ²	\$158.08	\$1,661,246	
Subtotal						\$1,661,246	
METALS:							
Stairway	72	Risers			\$468.25	\$33,714	
Guardrail	310.00	LF	94.49	m	\$26.07	\$8,082	
Allowance for Misc Items	10%				\$41,795.74	\$4,180	
Subtotal						\$45,975	
EQUIPMENT							Budgetary Quote: (CPES will automatically add Installation Factor)
Centrifuges	2	EA			\$720,288.34	\$1,440,577	
Liquid Polymer Feed System	2	EA			\$6,391.52	\$12,783	
Shaftless Screw Conveyor	80.00	ft	24.38	m	\$2,182.58	\$173,006	
Allowance for Misc Items	10%				\$1,628,365.99	\$162,637	
Subtotal						\$1,789,003	Total Horsepower >>> Percent On-Line Factor >>> Effective On-Line Horsepower >>>
I&C:							
Instruments							
Centrifuge Feed Header Magmeter (CFH, 4 inch)	1	EA			\$3,837.50	\$3,838	
Isolation Valve Actuators (Electric)	6	EA			\$6,007.16	\$36,043	
Slide Gate Actuators	14	EA			\$2,607.02	\$36,498	
Number of Analog I/O Counts	2	EA			\$247.67	\$495	
Number of Digital I/O Counts	120	EA			\$58.68	\$7,039	
Number of Local Panels	2	EA			\$12,253.00	\$24,506	
Number of PLC's	1	EA			\$13,035.11	\$13,035	
I&C Conduit Wire	2131.50	LF	649.68	m	\$11.30	\$24,089	
Allowance for Misc Items	5%				\$145,543.21	\$7,277	
Subtotal						\$152,820	
CONVEYING SYSTEMS:							Percent On-Line Factor >>> Effective On-Line Horsepower >>>
Bridge Crane (8 Ton)	1	EA			\$66,129.59	\$66,121	
Bridge Crane Rail	155.00	LF	47.24	m	\$34.34	\$5,323	
Allowance for Misc Items	10%				\$71,443.78	\$7,144	
Subtotal						\$78,588	

MECHANICAL						
Pipe:						
Centrifuge Feed Header (CFH, DI, 4 inch, Exposed)	131.42	LF	40.06	m	\$32.50	\$4,271
Centrifuge Feed Lateral (CFL, Steel, 4 inch, Exposed)	10.33	LF	3.15	m	\$86.65	\$895
Centrifuge Drain Lateral/Header (CD, Steel, 4 inch, Exposed)	141.75	LF	43.21	m	\$96.65	\$12,282
Centrifuge Decant Header (CDH, Steel, 4 inch, Exposed)	131.42	LF	40.06	m	\$86.65	\$11,387
Centrifuge Decant Lateral (CDL, Steel, 4 inch, Exposed)	10.33	LF	3.15	m	\$86.65	\$895
Elbows:						
Centrifuge Feed Header (CFH, DI, 4 inch)	3	EA			\$82.15	\$2,046
Centrifuge Feed Lateral (CFL, Steel, 4 inch)	2	EA			\$61.82	\$1,044
Centrifuge Drain Lateral/Header (CD, Steel, 4 inch)	3	EA			\$521.82	\$1,565
Centrifuge Decant Header (CDH, Steel, 4 inch)	5	EA			\$521.82	\$2,609
Centrifuge Decant Lateral (CDL, Steel, 4 inch)	2	EA			\$521.82	\$1,044
End Caps:						
Centrifuge Feed Header (CFH, DI, 4 inch)	0	EA			\$169.29	\$0
Centrifuge Feed Lateral (CFL, Steel, 4 inch)	0	EA			\$169.29	\$0
Centrifuge Drain Lateral/Header (CD, Steel, 4 inch)	0	EA			\$169.29	\$0
Centrifuge Decant Header (CDH, Steel, 4 inch)	0	EA			\$169.29	\$0
Centrifuge Decant Lateral (CDL, Steel, 4 inch)	0	EA			\$169.29	\$0
Tee:						
Centrifuge Feed Header (CFH, DI, 4 inch)	1	EA			\$1,132.70	\$1,133
Centrifuge Feed Lateral (CFL, Steel, 4 inch)	0	EA			\$1,188.91	\$0
Centrifuge Drain Lateral/Header (CD, Steel, 4 inch)	1	EA			\$1,188.91	\$1,189
Centrifuge Decant Header (CDH, Steel, 4 inch)	1	EA			\$1,188.91	\$1,189
Centrifuge Decant Lateral (CDL, Steel, 4 inch)	0	EA			\$1,188.91	\$0
Valves:						
Centrifuge Feed Header (CFH, DI, 4 inch)	0	EA			\$3,321.61	\$0
Centrifuge Feed Lateral (CFL, Steel, 4 inch)	2	EA			\$3,816.47	\$7,633
Centrifuge Drain Lateral/Header (CD, Steel, 4 inch)	2	EA			\$3,816.47	\$7,633
Centrifuge Decant Header (CDH, Steel, 4 inch)	0	EA			\$3,816.47	\$0
Centrifuge Decant Lateral (CDL, Steel, 4 inch)	2	EA			\$3,816.47	\$7,633
Slide Gates:						
Centrifuge Conveyor Solids Gates (10 in)	2	EA			\$923.17	\$1,846
Truck Conveyor Solids Gates (10 in)	12	EA			\$923.17	\$11,078
Allowance for Misc Items	5%				\$77,372.74	\$3,869
Subtotal						\$81,241
ELECTRICAL						
# MCC Sections	5	EA			\$6,044.96	\$40,225
Switchgear	0	EA			\$37,006.81	\$0
Adjustable Frequency Drives						
Centrifuges (Active) (100 hp each)	0	EA			\$20,598.00	\$0
Centrifuges (Standby) (100 hp each)	0	EA			\$20,598.00	\$0
Centrifuge Conveyor Belt (3 hp each)	0	EA			\$8,877.31	\$0
Truck Conveyor Belt (3 hp each)	0	EA			\$8,877.31	\$0
Electrical Conduit & Wire	408.00	LF	123.75	m	\$11.30	\$4,588
Allowance for Misc Items	10%				\$44,813.18	\$4,481
Subtotal						\$49,294
USER DEFINED ESTIMATE ITEMS:						
Item 1 Description	0.00		0.00		0.00	\$0
Item 2 Description	0.00		0.00		0.00	\$0
Item 3 Description	0.00		0.00		0.00	\$0
Item 4 Description	0.00		0.00		0.00	\$0
Item 5 Description	0.00		0.00		0.00	\$0
Item 6 Description	0.00		0.00		0.00	\$0
Item 7 Description	0.00		0.00		0.00	\$0
Item 8 Description	0.00		0.00		0.00	\$0
Item 9 Description	0.00		0.00		0.00	\$0
Item 10 Description	0.00		0.00		0.00	\$0
Item 11 Description	0.00		0.00		0.00	\$0
Item 12 Description	0.00		0.00		0.00	\$0
Item 13 Description	0.00		0.00		0.00	\$0
Item 14 Description	0.00		0.00		0.00	\$0
Item 15 Description	0.00		0.00		0.00	\$0
Subtotal						\$4,288,506
Subtotal						
ALLOWANCES:						
Finishes Allowance	2.00%		User Override		\$4,690,666	\$93,813
I&C Allowance	2.00%				\$4,690,666	\$93,813
Mechanical Allowance	3.00%				\$4,690,666	\$140,720
Electrical Allowance	2.00%				\$4,690,666	\$93,813
Facility Cost	10,373	Dry Pounds per Day	\$452.19	\$4,690,666	SCEFC01	
Facility Cost with Standard Additional Project Costs Added	10,373	Dry Pounds per Day	\$452.19	\$4,690,666	SCEFC02	
Facility Cost with Standard Additional Project Costs and Contractor Markups Added	10,373	Dry Pounds per Day	\$673.10	\$8,982,219	SCEFC03	
Facility Cost, Contractor Markup, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	10,373	Dry Pounds per Day	\$860.32	\$8,849,742	SCEFC05	
Facility Cost with Standard Additional Project Costs, Contractor Markup, and Location Adjustment Factor Added	10,373	Dry Pounds per Day	\$860.32	\$8,849,742	SCEFC06	

Gravity Thickener

Gravity Thickener Thick

Printed by

3/4/2017
12:21 PM

Gravity Thickener							
PROCESS DESIGN CRITERIA							
Is This Facility Included in My Project? Yes							
Process User Inputs:	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
Solids Production:							
Input Plant Flow Rate	12.00	mgd	45.42	ML/d			
Input Raw Water Turbidity	1.00	NTU					Typically 1 to 2
Input Fraction of Turbidity to Contribute to Solids	1.00	mgL/NTU					
Input Raw Water Color	CU						Typically 0.02 to 0.1
Input Fraction of Color to Contribute to Solids	0.05	mgL/CU					
Input Alum Dose	40.00						
Input Fraction of Alum to Contribute to Solids	0.44						Typical Value = 0.44 based on 3 waters of hydration for the most probable solid Al(OH)3 3H2O
Input Ferric Chloride Dose	0.99	mg/L					Typical Value = 0.99 based on 3 waters of hydration for the most probable solid Fe(OH)3 3H2O
Fraction of Ferric Chloride to Contribute to Solids							
Input Total Polymer Dose (coagulation, flocculation, filter aids)		mg/L					
Input Raw Water Iron	2.00	mg/L					Typical Value = 2
Input Iron Factor	2.00	mg/L					Typical Value = 2
Input Raw Water Manganese	2.00	mg/L					
Input Manganese Factor	40.00	mg/L as CaCO3					
Input PAC Dose	1.00	mg/L as CaCO3					Typical Value: 1 for sodium hydroxide softening, 2 for lime softening
Input Carbonate Hardness Concentration to be Removed via Softening	40.00	mg/L as CaCO3					
Input Carbonate Hardness Factor (mg of softening solids produced per mg of hardness removed)	1.00	mg/L as CaCO3					
Input Non-Carbonate Hardness Concentration to be Removed via Softening	40.00	mg/L					Typical Value: 1 for sodium hydroxide softening; 1 for soda ash softening
Input Non-Carbonate Hardness Factor (mg of softening solids produced per mg of hardness removed)	1.00	mg/L					
Calculate Solids Removed	18.60	mg/L					
Calculate Dry Residual Solids Produced	1867.89	lb/d	4476.00	kg/d			
Optional: Input Daily Dry Solids Production (overwrites above calculations) (dry)	1867.89	lb/d	503.94	kg/d			
Gravity Thickener Sizing & Sludge Storage:							
Input Number of On-Line Thickeners	1	#					Typically 1
Input Number of Standby Thickeners	1	#					Typically 0.25% to 0.75%
Input % Dry Solids in Sludge to Thickeners	0.25%	%					
Calculate Total Sludge Flow Rate	473280.00	gpd	1791.56	m3/d			
Calculate Sludge Flow to Each Thickener	473280.00	gpd	1791.56	m3/d			
Calculate Dry Solids Flow to Each Thickener	9867.89	lb/d	4476.00	kg/d			
Input Thickener Hydraulic Loading Rate	300.00	gpd/sf	44,008.50	m/d			Typically 100 to 300 gpd/sf for metal salt coagulant sludges
Input Thickener Solids Loading Rate	10.00	lb/d/sf	4.54	kg/d/m2			Typically 5 to 10 lb/d/sf
Calculate Thickener Diameter Each Based on Hydraulic Loading Rate	44.82	ft	13660.58	mm			
Calculate Thickener Diameter Each Based on Solids Loading Rate	35.45	ft	10803.94	mm			
Calculate Thickener Diameter Each (maximum of above)	44.82	ft	13660.58	mm			
Input Thickened Sludge % Dry Solids	2.00%	%					Typically 2% to 5% for metal salt coagulant sludges treated with polymer
Calculate Thickened Sludge Density	63.12	lb/cf	1011.07	kg/m3			
Input Days of Thickened Sludge Storage in Thickener	1.00	days					Typically 0 to 3 days (long weekend)
Calculate Thickened Sludge Storage Depth	4.95	ft	1510.26	mm			If Sludge Storage depth is greater than desired: 1) Reduce days of storage or 2) Decrease controlling thickener loading rate criteria input
Calculate Total Thickened Sludge Storage Volume	18474.29	gal	221.35	m3			
Input Clear Water Depth Above Sludge Line	10.00	ft	3,048.00	mm			Typically 8 to 11 feet
Input Free Board	2.00	ft	609.60	mm			Typically 1 to 3 feet
Calculate Total Thickener Depth	18.05	ft	5157.88	mm			
Input Thickener Wall Height Above Grade	0.00	ft	0.00	mm			
Calculate Wall Burial Depth	18.95	ft	5157.88	mm	DB		
Gravity Thickener Peripheral Wall Launder Sizing:							
Calculate Total Flow Rate of all Thickeners	0.47	mgd	1791.56	m3/d	QT		
Calculate Flow Rate of Each Active Thickener	0.47	mgd	1791.56	m3/d	Q mgd		
Convert Each Thickener Flow Rate	0.73	cfs	20.74	l/s	Q cfs		
Input Velocity in Launder	5.00	fps	1.52	m/s	V		Typically < 5 fps
Calculate Area (Q cfs / V)	0.15	sf	0.01	m2			
Calculate Launder Freeboard	1.00	ft	304.80	mm			Fixed
Input Launder Width	2.00	ft	608.80	mm			
Calculate Launder Height Excluding Freeboard	0.07	ft	22.32	mm			
Calculate Launder Height Including Freeboard	1.07	ft	327.12	mm			Should be ≤ 5 ft
Thickened Sludge Pump Sizing:							
Calculate Thickened Sludge Flow from Each Thickener	58474.29	gpd	221.35	m3/d			
Calculate Thickened Sludge Decant Flow from Each Thickener	414605.71	gpd	1570.21	m3/d			Fixed: 1 duty and 1 standby
Number of Progressive Cavity Thickened Sludge Pumps per Thickener	2	#					
Calculate Number of Thickened Sludge Pumps	4	#					
Calculate Thickened Sludge Pump Capacity Each	40.81	gpm	153.71	l/min			
Input Thickened Sludge Pump Total Dynamic Head (TDH)	60.00	ft	18,288.00	mm			
Calculate Thickened Sludge Pump Horsepower (each)	0.82	hp	0.61	kW			Minimum of 10 ft
Input Distance between Thickener and Sludge Pump Pad	18.00	ft	4,878.80	mm			Typically 8.5 ft
Input Sludge Pump Length (progressive cavity)	8.50	ft	2,590.80	mm			Typically 2.0 ft
Input Sludge Pump Width (progressive cavity)	2.00	ft	609.60	mm			Typically equal to sludge pump length
Input Stagger Distance Between Sludge Pump Centerlines - Length	8.50	ft	2,590.80	mm			
Input Distance Between Sludge Pump Centerlines (width) and Around Pumps for Access	4.50	ft	1,371.60	mm			Typically 4.5 ft for access
Include the Cost of a Building Over Sludge Pump Station?	Yes	Y/N					
Input Cutback Slope	1.50	1					
Input Over Excavation Depth	1.00	ft	0.00	mm	OED		
Mechanical Sizing Requirements:							
Pipe Name	Input Velocity	Unit (English)	Input Velocity	Unit (Metric)	Standard Pipe Size	Unit (English)	Nominal Pipe Size

Unthickened Sludge Influent Pipe	3.00	ps	0.91	m/s	8.00	in	200.00
Decant Pipe	5.00	ps	1.52	m/s	6.00	in	150.00
Thickened Sludge Suction Pipe	3.00	ps	0.91	m/s	4.00	in	100.00
Thickened Sludge Discharge Pipe	3.00	ps	0.91	m/s	4.00	in	100.00
Mechanical Material Requirements:							
Pipe Name	Pipe ID	Installation Type	Pipe Material	Pipe Lining Material	Pipe Coating Material	Comments	Red Flags
Unthickened Sludge Influent Pipe	USP	Buried	DI	Cement Mortar	Tape Coating		
Unthickened Sludge Influent Pipe	USP	Encased	DI	Cement Mortar	Fusion Bonded Epoxy		
Unthickened Sludge Influent Pipe	USP	Submerged	DI	Cement Mortar	Fusion Bonded Epoxy		
Decant Pipe	DSP	Buried	DI	Cement Mortar	Tape Coating		
Decant Pipe	DSP	Exposed	DI	Cement Mortar	Paint		
Decant Pipe	DSP	Encased	DI	Cement Mortar	Fusion Bonded Epoxy		
Thickened Sludge Suction Pipe	TSSP	Encased	DI	Cement Mortar	Fusion Bonded Epoxy		
Thickened Sludge Suction Pipe	TSSP	Exposed	Steel	Cement Mortar	Paint		
Thickened Sludge Discharge Pipe	TSOP	Exposed	DI	Cement Mortar	Paint		
Electrical User Inputs and Sizing Requirements:							
Is this a "Critical" Facility (requiring standby power)?	No	Y/N					
Is there SWGR?	No						
Electrical Equipment Lengths:							
Item	Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 50hp)	MCC Spaces for Breakers	Total MCC Spaces
Thickened Sludge Pumps (Active)	2.00	0.82	Yes	0.00	6.00	4.00	
Thickened Sludge Pumps (Standby)	2.00	0.82	No	4.00	0.00	0.00	
Gravity Thickener Rake Mechanism	2.00	1.00	No	4.00	0.00	0.00	
User Defined Item #1	0.00	0.00	No	0.00	0.00	0.00	
User Defined Item #2	0.00	0.00	No	0.00	0.00	0.00	
TOTAL		5.3		8.00	6.00	4.00	18.00
Electrical Equipment Widths:							
Equipment	Depth (ft)						
MCC	1.67						
Small AFD's	0.00						
Large AFD's	0.00						
Switchgear	0.00						
Maximum Depth	1.67						
Clear Distances:							
Clear Distance	Width	Length	Comment				
CD1		3.00	Clear Distance between wall and MCC	Typically 3 feet			
CD2		1.00	Clear Distance between MCC and Small AFD	Typically 1 foot			
CD3		0.00	Clear Distance between Small AFD and Large AFD	Typically Zero			
CD4		0.00	Clear Distance between Large AFD and Switchgear	Typically Zero			
CD5		0.00	Clear Distance between Switchgear and Contingency Space	Typically Zero			
CD6		4.00	Clear Distance behind Switchgear (If there is no Switchgear, this distance will be Zero)				
CD7		3.00	Clear Distance in front of Equipment	Typically 3 feet			
Contingency Length		0.00	Contingency length	Typically Zero			
Electric Room Length (ft):							
CD1	3.00						
MCC	10.00						
CD2	1.00						
Small AFD's	0.00						
CD3	0.00						
Large AFD's	0.00						
CD4	0.00						
Switchgear	0.00						
CD5	0.00						
Contingency	0.00						
Total Length	14.00						
Electric Room Width (ft):							
CD6	0.00		If there is no switchgear, this distance will be Zero.				
Maximum Equipment Depth	1.67						
CD7	3.00						
Total Width	4.67						
Estimating Dimensions:							
Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment	
Total Number of Thickeners	2.00	#					
Gravity Thickener (dimensions per each):							
Perimeter Wall Inside Diameter	44.82	ft	13660.58	mm			
Perimeter Wall Outside Diameter	48.82	ft	14270.18	mm			
Perimeter Wall Height	18.95	ft	5167.88	mm			
Wall Footer Thickness	18.00	in	406.40	mm		Model based on 16"	
Wall Footer Thickness	1.33	ft	406.40	mm			
Slab on Grade Thickness	6.00	in	152.40	mm		Model based on 6"	
Slab on Grade Thickness	0.50	ft	152.40	mm			
Center Cone Outside Diameter	8.17	ft	1879.60	mm		Fixed	
Center Cone Inside Diameter	3.50	ft	1066.80	mm		Fixed	
Center Cone Slab on Grade Thickness	16.00	in		mm		Model based on 16"	
Center Cone Slab on Grade Thickness	1.33	ft	406.40	mm			
Center Cone Wall Height	2.33	ft	59.18	mm		Model based on 2.33"	
Center Cone Wall Thickness	18.00	in	406.40	mm		Model based on 16"	
Center Cone Wall Thickness	1.33	ft	406.40	mm			
Launder Elevated Slab Width	2.00	ft	50.80	mm		Model based on 2"	
Launder Elevated Slab Thickness	12.00	in	304.80	mm		Model based on 12"	
Launder Elevated Slab Thickness	1.00	ft	304.80	mm			
Launder Wall Diameter	40.82	ft	12441.36	mm			
Launder Wall Height	1.07	ft	327.12	mm			
Launder Wall Thickness	8.00	in	203.20	mm		Model based on 8"	
Perimeter Wall Thickness	0.67	ft	203.20	mm			
Perimeter Wall Thickness	12.00	in	304.80	mm		Model based on 12"	
Perimeter Wall Thickness	1.00	ft	304.80	mm			

Floor Slope Factor	1.03						Fixed
Side Slope Depth Factor	0.23						Fixed
Side Slope Factor	4.29						Fixed
Excavation Diameter	55.82	ft	17013.36	mm			
Cone Excavation Depth	8.50	ft	2590.81	mm			
Perimeter Wall Excavation Depth (Includes Over Excavation)	19.29	ft	5879.06	mm			
Thickened Sludge Pump Slab:							
Length	26.00	ft	7924.80	mm			Fixed
Width	30.50	ft	9296.40	mm			
Slab on Grade Length	28.00	ft	8534.40	mm			
Slab on Grade Width	32.50	ft	9908.00	mm			
Slab Thickness	18.00	in	406.40	mm			Model based on 16"
Slab Thickness	13.3	ft	406.40	mm			
Excavation Length	32.00	ft	9753.60	mm			
Excavation Width	38.50	ft	11125.20	mm			
Excavation Depth	3.33	ft	1016.00	mm			
Electrical Room:							
Length	14.00	ft	4267.20	mm			
Width	4.67	ft	1422.40	mm			
Slab on Grade Length	18.00	ft	4878.80	mm			
Slab on Grade Width	5.67	ft	2032.00	mm			
Slab on Grade Thickness	18.00	in	457.20	mm			Model based on 18"
Slab on Grade Thickness	1.50	ft	457.20	mm			
Excavation Length	20.00	ft	6096.00	mm			
Excavation Width	10.67	ft	3251.20	mm			
Excavation Depth	3.50	ft	1066.80	mm			
 							
Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
SITEWORK:							
Gravity Thickener:							
Excavation	8,550.26	CY	6537.16	m ³	\$6.35	\$54,277	
Imported Structural Backfill	372.46	CY	284.75	m ³	\$48.10	\$17,915	
Native Backfill	3,624.42	CY	2771.07	m ³	\$7.80	\$28,286	
Haul Excess	4,925.86	CY	3766.09	m ³	\$7.80	\$38,442	
Thickened Sludge Pump Slab:							
Excavation	208.86	CY	159.68	m ³	\$7.80	\$1,630	
Imported Structural Backfill	100.94	CY	77.17	m ³	\$49.10	\$4,855	
Native Backfill	42.28	CY	32.33	m ³	\$7.80	\$330	
Haul Excess	168.58	CY	127.36	m ³	\$7.80	\$1,300	
Electrical Room:							
Excavation	54.35	CY	41.55	m ³	\$7.80	\$424	
Imported Structural Backfill	19.75	CY	15.10	m ³	\$48.10	\$950	
Native Backfill	20.87	CY	15.98	m ³	\$7.80	\$163	
Haul Excess	33.48	CY	25.60	m ³	\$7.80	\$261	
Allowance for Misc Items	5%					\$148,833.18	\$7,442
Subtotal							\$158,275
CONCRETE:							
Gravity Thickener:							
Wall Footers	79.90	CY	61.09	m ³	\$393.62	\$31,450	
Slanted Slab on Grade	80.03	CY	45.90	m ³	\$393.62	\$23,629	
Slanted Floor Grout (2" thick)	3,241.64	SF	301.16	m ²	\$22.27	\$72,185	
Center Cone Slab on Grade	2.95	CY	2.26	m ³	\$393.62	\$1,181	
Center Cone Walls	4.46	CY	3.41	m ³	\$468.25	\$2,086	
Perimeter Walls	184.72	CY	141.23	m ³	\$663.35	\$122,538	
Laundr Elevated Slab	20.86	CY	15.95	m ³	\$780.42	\$16,279	
Laundr Wall	6.80	CY	5.20	m ³	\$780.42	\$5,304	
Concrete Fill	3.48	CY	2.66	m ³	\$351.19	\$1,221	
Thickened Sludge Pump Slab:							\$0
Slab on Grade	44.94	CY	34.36	m ³	\$366.31	\$16,012	
Electrical Room:							\$0
Slab on Grade	5.93	CY	4.53	m ³	\$393.62	\$2,333	
Allowance for Misc Items	5%					\$204,198.37	\$14,710
Subtotal							\$308,908
METALS:							
Gravity Thickener:							
Walkway Grating (3' wide, steel support beams supplied by mechanism mfr)	280.91	SF	26.10	m ²	\$86.85	\$24,115	
Walkway Handrail	187.27	LF	57.08	m	\$86.85	\$16,077	
Stairway	0	Risers			\$468.25	\$0	
Allowance for Misc Items	10%					\$40,191.37	\$4,019
Subtotal							\$44,211
MASONRY:							
Thickened Sludge Pump Building	793.00	SF	73.67	m ²	\$166.08	\$123,774	
Electrical Room	65.33	SF	6.07	m ²	\$166.08	\$10,197	
Subtotal	858.33						\$133,971
EQUIPMENT:							
Gravity Thickener Drive Mechanism (1 hp each)	2	EA				\$118,519.13	\$237,038
Thickened Sludge Pumps (Active, Progressive Cavity Pumps 1 hp each)	2	EA				\$5,740.23	\$11,480
Thickened Sludge Pumps (Standby, Progressive Cavity Pumps 1 hp each)	2	EA				\$5,740.23	\$11,480
Allowance for Misc Items	10%					\$248,518.72	\$24,852
Subtotal							\$284,851
I&C:							
Instruments							
Thickened Sludge Discharge Pipe Magmeter (TSDP, 4 inch)	2	EA				\$6,419.30	\$12,839
Isolation Valve Actuators (Electric)	6	EA				\$6,007.18	\$36,043
Level Transmitters	2	EA				\$8,044.98	\$16,090
Number of Analog I/O Counts	5	EA				\$247.67	\$1,238
Number of Digital I/O Counts	38	EA				\$58.66	\$2,112
Number of Local Panels	2	EA				\$12,352.00	\$24,508
Number of PLC's	1	EA				\$13,035.11	\$13,035
I&C Conduit Wire	908.18	LF	276.61	m		\$17.30	\$10,284
Allowance for Misc Items	5%					\$118,126.38	\$5,806
Subtotal							\$121,933
MECHANICAL:							
Pipe:							
Unthickened Sludge Influent Pipe (UP, Buried, 8 inch, DI)	33.91	LF	10.34	m		\$65.00	\$2,204
Unthickened Sludge Influent Pipe (UP, Encased, 8 inch, DI)	0.00	LF	0.00	m		\$65.00	\$0
Unthickened Sludge Influent Pipe (UP, Submerged, 8 inch, DI)	44.82	LF	13.68	m		\$65.00	\$2,913
Decant Pipe (DSP, Buried, 6 inch, DI)	2.00	LF	0.61	m		\$10.75	\$98
Decant Pipe (DSP, Exposed, 6 inch, DI)	33.91	LF	10.34	m		\$48.75	\$1,653
Decant Pipe (DSP, Encased, 6 inch, DI)	0.00	LF	0.00	m		\$48.75	\$0
Thickened Sludge Suction Pipe (TSSP, Encased, 4 inch, DI)	76.82	LF	23.41	m		\$32.50	\$2,497
Thickened Sludge Suction Pipe (TSSP, Exposed, 4 inch, Steel)	49.50	LF	15.09	m		\$96.65	\$4,289
Thickened Sludge Discharge Pipe (TSDP, Exposed, 4 inch, DI)	48.00	LF	14.63	m		\$71.50	\$1,560

Elbows:						
Unthickened Sludge Influent Pipe (USP, Buried, 8 inch, DI)	2	EA			\$1,364.31	\$2,728
Unthickened Sludge Influent Pipe (USP, Encased, 8 inch, DI)	0	EA			\$1,364.31	\$0
Unthickened Sludge Influent Pipe (USP, Submerged, 8 inch, DI)	6	EA			\$1,364.31	\$8,186
Decant Pipe (DSP, Buried, 6 inch, DI)	2	EA			\$1,023.23	\$2,046
Decant Pipe (DSP, Exposed, 6 inch, DI)	0	EA			\$1,023.23	\$0
Decant Pipe (DSP, Encased, 6 inch, DI)	0	EA			\$1,023.23	\$0
Thickened Sludge Suction Pipe (TSSP, Encased, 4 inch, DI)	0	EA			\$642.15	\$0
Thickened Sludge Suction Pipe (TSSP, Exposed, 4 inch, Steel)	2	EA			\$621.82	\$1,044
Thickened Sludge Discharge Pipe (TSDP, Exposed, 4 inch, DI)	2	EA			\$682.15	\$1,364
End Caps:						
Unthickened Sludge Influent Pipe (USP, Buried, 8 inch, DI)	0	EA			\$328.59	\$0
Unthickened Sludge Influent Pipe (USP, Encased, 8 inch, DI)	0	EA			\$328.59	\$0
Unthickened Sludge Influent Pipe (USP, Submerged, 8 inch, DI)	0	EA			\$328.59	\$0
Decant Pipe (DSP, Buried, 6 inch, DI)	0	EA			\$253.94	\$0
Decant Pipe (DSP, Exposed, 6 inch, DI)	0	EA			\$253.94	\$0
Decant Pipe (DSP, Encased, 6 inch, DI)	0	EA			\$253.94	\$0
Thickened Sludge Suction Pipe (TSSP, Encased, 4 inch, DI)	4	EA			\$169.29	\$677
Thickened Sludge Suction Pipe (TSSP, Exposed, 4 inch, Steel)	0	EA			\$169.29	\$0
Thickened Sludge Discharge Pipe (TSDP, Exposed, 4 inch, DI)	2	EA			\$169.29	\$339
Tee:						
Unthickened Sludge Influent Pipe (USP, Buried, 8 inch, DI)	0	EA			\$2,265.40	\$0
Unthickened Sludge Influent Pipe (USP, Encased, 8 inch, DI)	0	EA			\$2,265.40	\$0
Unthickened Sludge Influent Pipe (USP, Submerged, 8 inch, DI)	0	EA			\$2,265.40	\$0
Decant Pipe (DSP, Buried, 6 inch, DI)	2	EA			\$1,699.05	\$3,398
Decant Pipe (DSP, Exposed, 6 inch, DI)	0	EA			\$1,699.05	\$0
Decant Pipe (DSP, Encased, 6 inch, DI)	0	EA			\$1,699.05	\$0
Thickened Sludge Suction Pipe (TSSP, Encased, 4 inch, DI)	2	EA			\$1,132.70	\$2,265
Thickened Sludge Suction Pipe (TSSP, Exposed, 4 inch, Steel)	2	EA			\$1,188.91	\$2,378
Thickened Sludge Discharge Pipe (TSDP, Exposed, 4 inch, DI)	2	EA			\$1,132.70	\$2,265
Valves:						
Unthickened Sludge Influent Pipe (USP, Buried, 8 inch, DI)	0	EA			\$6,643.21	\$0
Unthickened Sludge Influent Pipe (USP, Encased, 8 inch, DI)	0	EA			\$6,643.21	\$0
Unthickened Sludge Influent Pipe (USP, Submerged, 8 inch, DI)	2	EA			\$6,643.21	\$13,286
Decant Pipe (DSP, Buried, 6 inch, DI)	0	EA			\$4,982.41	\$0
Decant Pipe (DSP, Exposed, 6 inch, DI)	0	EA			\$4,982.41	\$0
Decant Pipe (DSP, Encased, 6 inch, DI)	0	EA			\$4,982.41	\$0
Thickened Sludge Suction Pipe (TSSP, Encased, 4 inch, DI)	0	EA			\$3,321.61	\$0
Thickened Sludge Suction Pipe (TSSP, Exposed, 4 inch, Steel)	2	EA			\$3,876.47	\$7,633
Thickened Sludge Discharge Pipe (TSDP, Exposed, 4 inch, DI)	2	EA			\$3,321.61	\$6,643
Allowance for Misc Items	5%				\$69,467.81	\$3,473
Subtotal						\$72,941
ELECTRICAL						
# MCC Sections	6	EA			\$8,044.96	\$48,270
Switchgear	0	EA			\$37,006.81	\$0
Adjustable Frequency Drives						
Thickened Sludge Pumps (Active) (1 hp each)	2	EA			\$8,409.44	\$16,819
Thickened Sludge Pumps (Standby) (1 hp each)	0	EA			\$8,409.44	\$0
Gravity Thickener Rate Mechanism (1 hp each)	0	EA			\$8,431.62	\$0
Electrical Conduit & Wire	237.84	LF	72.43	m	\$11.10	\$2,688
Allowance for Misc Items	10%				\$67,774.27	\$6,777
Subtotal						\$74,552
USER DEFINED ESTIMATE ITEMS:	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT	TOTAL COST
Item 1 Description	0.00		0.00		0.00	\$0
Item 2 Description	0.00		0.00		0.00	\$0
Item 3 Description	0.00		0.00		0.00	\$0
Item 4 Description	0.00		0.00		0.00	\$0
Item 5 Description	0.00		0.00		0.00	\$0
Item 6 Description	0.00		0.00		0.00	\$0
Item 7 Description	0.00		0.00		0.00	\$0
Item 8 Description	0.00		0.00		0.00	\$0
Item 9 Description	0.00		0.00		0.00	\$0
Item 10 Description	0.00		0.00		0.00	\$0
Item 11 Description	0.00		0.00		0.00	\$0
Item 12 Description	0.00		0.00		0.00	\$0
Item 13 Description	0.00		0.00		0.00	\$0
Item 14 Description	0.00		0.00		0.00	\$0
Item 15 Description	0.00		0.00		0.00	\$0
Subtotal						\$0
Subtotal						\$1,197.642
ALLOWANCES:	User Override					
Finishes Allowance	2.00%				\$1,408,990	\$28,180
I&C Allowance	4.00%				\$1,408,990	\$56,360
Mechanical Allowance	5.00%				\$1,408,990	\$70,450
Electrical Allowance	4.00%				\$1,408,990	\$56,360
Facility Cost	948,560	GPD	\$1.49	\$1,408,990	Facility Cost Name	
Facility Cost with Standard Additional Project Costs Added	948,560	GPD	\$1.49	\$1,408,990	SGTFC01	
Facility Cost with Standard Additional Project Costs and Contractor Markups Added	948,560	GPD	\$2.22	\$2,097,331	SGTFC02	
Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	948,560	GPD	\$2.17	\$2,057,537	SGTFC03	
Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	948,560	GPD	\$2.17	\$2,057,537	SGTFC04	

	B	C	D	E	F	G	H	I
1	Rapid Mixing - Inline							
2								
3								
4	Assumptions							
5								
6	Based on Denver Water Reuse Project							
7	2 Basins @ 15 MGD each							
8	One chemical per each rapid mixer							
9	If this is a Seawater Desalination Application, the materials in contact with seawater need to be corrosion resistant.							
10								
11	INLINE MECHANICAL RAPID MIXING							
12								
13	Process User Inputs	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
14	Is this a Seawater Desalination Application?	No	Y/N					
15	Has the USER Contacted Equipment Suppliers to Obtain Equipment Quotes?	No	Y/N					Fixed
16	Total Plant Flow	12.00	mgd	45.42	ML/d			If using Lamella Plate Clarifier, the Rapid Mixing Total Plant Flow should equal the Lamella Plate Clarifier Total Plant Flow. For information, the Lamella Plate Total Plant Flow can be found in the Lamella Clarifier model cell C13.
17								
18	Conversion of Total Plant Flow	18.57	cfs	0.53	m³/s			
19	Number of Trains	1	#				OKAY	
20	Calculate Plant Flow per Train = QS/#T (cfs)	18.57	cfs	0.53	m³/s			
21	Number of Standby Trains	0	#					Default is 0. Maximum is 2
22	Total Number of Trains (Active and Standby)	1	#					
23	Input Rapid Mix Velocity Gradient	2,000.00	sec-1				OKAY	Typically 1,000 to 3,000 sec-1
24	Input Wire to Water Rapid Mix Energy Input Efficiency	80%						
25	Input Min Water Temperature	32.00	degrees F	0.00	degrees C		OKAY	
26	Water Viscosity	0.0000374	lb-s/ft	1.79	cP			From Lookup Table
27	Calculate Volume = PI * (MSD/12)^2 / 4 * 1.5 * MD / 12	18.41	cf	0.52	m³			
28	Calculate HP = (VG)^2 * Mu * V / E / 550	9.00	hp	6.71	kW			
29	Is the Rapid Mix Facility covered? ("Yes" or "No")	Yes	Y/N					
30	Input Structure Burial Depth (ft)	0.00	ft	0.1440	mm			
31	Input Clear Distance Between Pipe Trains & Internal Walls (ft)	5.00	ft	1,524.00	mm	CDBT		Typically 4 to 6 feet
32	Number of Analyzers: (total facility)							
33	pH / Temperature	1	#					
34	Turbidity	0	#					
35	Streaming Current Detector	1	#					
36	UV Absorbance	0	#					
37	Conductivity	0	#					
38	Input Cutback Slope	1.00	1					
39	Input Over Excavation Depth	1.00	ft	2.00	mm	OED		
40	Mechanical Sizing Requirements:							
41	Pipe Name	Input Velocity	Unit (English)	Input Velocity	Unit (Metric)	Standard Pipe Size	Unit (English)	Nominal Pipe Size
42	Rapid Mix Pipe	5.00	fps	1.52	m/s	30.00	in	750.00
43	Flow Control Pipe	15.00	fps	4.57	m/s	16.00	in	400.00
44								
45	Mechanical Material Requirements:							
46	Pipe Name	Pipe ID	Installation Type	Pipe Material	Pipe Lining Material	Pipe Coating Material	Red Flags	Comments
47	Rapid Mix Pipe	RW	Exposed	Steel	Cement Mortar	Paint		
48	Flow Control Pipe	FCP	Exposed	Steel	Cement Mortar	Paint		
49								
50	Electrical User Inputs and Sizing Requirements:							
51	Is this a "Critical" Facility (requiring standby power)?	No	Y/N					
52	Is there SWGR?	No						
53	Item	Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 50hp)	MCC Spaces for Breakers	Total MCC Spaces
54	Mechanical Mixers	1.00	9.00	No	2.00	0.00	0.00	
55	User Defined Item #1	0.00	0.00	No	0.00	0.00	0.00	
56	User Defined Item #2	0.00	0.00	No	0.00	0.00	0.00	
57	User Defined Item #3	0.00	0.00	No	0.00	0.00	0.00	
58	TOTAL		9.00		2.00	0.00	0.00	2.00
59								
60	Electrical Equipment Widths:							
61	Equipment	Depth (ft)						
62	MCC	1.67						
63	Small AFD's	0.00						
64	Large AFD's	0.00						
65	Switchgear	0.00						
66	Maximum Depth	1.67						
67	Clear Distances:							
68	Clear Distance	Width	Length	Comment				
69	CD1		3.00	Clear Distance between wall and MCC	Typically 3 feet			
70								
71								

	B	C	D	E	F	G	H	I
72	CD2		1.00	Clear Distance between MCC and Small AFD	Typically 1 foot			
73	CD3		0.00	Clear Distance between Small AFD and Large AFD	Typically Zero			
74	CD4		0.00	Clear Distance between Large AFD and	Typically Zero			
75	CD5		0.00	Clear Distance between Switchgear and Contingency Space	Typically Zero			
76	CD6	4.00		Clear Distance behind Switchgear (if there is no Switchgear, this distance will be Zero)				
77	CD7	3.00		Clear Distance in front of Equipment	Typically 3 feet			
78	Contingency Length		0.00	Contingency length	Typically Zero			
79	80 Electric Room Length (ft)							
81	CD1	3.00						
82	MCC	8.33						
83	CD2	1.00						
84	Small AFD's	0.00						
85	CD3	0.00						
86	Large AFD's	0.00						
87	CD4	0.00						
88	Switchgear	0.00						
89	CD5	0.00						
90	Contingency	0.00						
91	Total Length	12.33						
92	93 Electric Room Width (ft)							
94	CD6	0.00		If there is no switchgear, this distance will be Zero.				
95	Maximum Equipment Depth	1.67						
96	CD7	3.00						
97	Total Width	4.67						
98	Estimating Dimensions (per trian):		Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags
99	100 Rapid Mix Pipe Elbow Length	4.34	ft	1,321.31	mm			Lookup Value
101	Rapid Mix Isolation Valve Length	1.00	ft	304.80	mm			Lookup Value
102	Rapid Mix - Flow Control Reducer Length	4.67	ft	1,422.40	mm			
103	Flowmeter Length	2.00	ft	609.60	mm			Lookup Value
104	Flow Control Valve Length	0.67	ft	203.20	mm			Lookup Value
105								
106	Slab on Grade:							
107	Concrete Thickness (Inches)	12.00	in	304.80	mm			Model based on 12"
108	Concrete Thickness (Feet)	1.00	ft	304.80	mm	RМИSGT		
109	Slab on Grade Length	54.59	ft	16,638.02	mm			
110	Slab on Grade Width	12.50	ft	3,810.00	mm			
111	Footing:							
112	Footing Thickness (Inches)	12.00	in	304.80	mm			Model based on 12"
113	Footing Thickness (Feet)	1.00	ft	304.80	mm	RМИFTT		
114	Footing Width (Inches)	24.00	in	609.60	mm			Fixed
115	Footing Width (Feet)	2.00	ft	609.60	mm			
116	Stem Walls:							
117	Wall Thickness (Inches)	12.00	in	304.80	mm			Model based on 8"
118	Wall Thickness (Feet)	1.00	ft	304.80	mm	RМИWST		
119	Wall Height (Feet)	0.00	ft	0.00	mm	DB		
120								
121	Overall Dimensions:							
122	SOG Length (Feet)	54.59	ft	16,638.02	mm	SOGL		
123	SOG Width (Feet)	12.50	ft	3,810.00	mm	SOGW		
124	Building Length (SOGL +(SWT*2)) (Feet)	56.59	ft	17,247.62	mm	BL		
125	Building Width (SOGW +(SWT*2)) (Feet)	14.50	ft	4,419.60	mm	BW		
126	Electrical Room Length (Feet)	12.33	ft	3,759.20	mm			
127	Electrical Room Width (Feet)	4.67	ft	1,422.40	mm			
128	Excavation Length (BL + 4) (Feet)	60.59	ft	18,466.82	mm			
129	Excavation Width (BW + 4) (Feet)	18.50	ft	5,638.80	mm			
130	Excavation Depth (SWH + FT + 1 + Over Exc) (Feet)	3.00	ft	914.40	mm			
131								
132	Description		Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost
133								User Over-Write
134								
135	SITEWORK:							
136	Excavation	169.01	CY	129.22	m3	\$8.35		\$1,073
137	Imported Structural Backfill	83.03	CY	63.48	m3	\$48.10		\$3,994
138	Native Backfill	26.36	CY	20.16	m3	\$7.80		\$206
139	Haul Excess	142.65	CY	109.06	m3	\$7.80		\$1,113
140	Allowance for Misc Items	5%				\$6,385.37		\$319
141	Subtotal							\$6,705
142								
143	CONCRETE:							
144	Wall Footing	10.53	CY	8.05	m3	\$356.31		\$3,752
145	Stem Walls	0.00	CY	0.00	m3	\$704.01		\$0
146	Slab on Grade	25.27	CY	19.32	m3	\$356.31		\$9,004
147	Pipe Supports	7.00	EA			\$520.28		\$3,642
148	Electrical Room Slab on Grade	2.13	CY	1.63	m3	\$356.31		\$760
149	Allowance for Misc Items	5%				\$17,158.36		\$858
150	Subtotal							\$18,016
151								
152	MASONRY:							
153	CMU Building	820.51	SF	76.23	m2	\$156.08		\$128,067
154	Electrical Room	57.56	SF	5.35	m2	\$156.08		\$8,983
155	Subtotal	878.06						\$137,051
156	EQUIPMENT:							
157								
158	Inline Mixer (30-inch)	1.00	EA			\$50,241.95		\$50,242
159	Allowance for Misc Items	10%				\$50,241.95		\$5,024
160	Subtotal							\$55,266

	B	C	D	E	F	G	H	I
161								
162	INSTRUMENTS & CONTROLS							
163	Instruments							
164	Mag Meter (16-Inch)	1.00	EA			\$15,442.50	\$0	\$0.00
165	pH / Temperature	1.00	EA			\$2,482.89	\$2,483	
166	Turbidity	0.00	EA			\$3,715.89	\$0	
167	Streaming Current Detector	1.00	EA			\$12,667.81	\$12,668	
168	UV Absorbance	0.00	EA			\$25,849.09	\$0	
169	Conductivity	0.00	EA			\$2,440.67	\$0	
170	Sample Panels	1.00	EA			\$4,682.50	\$4,682	
171	Isolation Valve Actuators	2.00	EA			\$8,007.10	\$12,014	
172	Flow Control Valve Actuators	1.00	EA			\$6,007.10	\$6,007	
173	Number of Analog I/O Counts	7.20	EA			\$247.67	\$1,783	
174	Number of Digital I/O Counts	16.80	EA			\$58.00	\$985	
175	Number of PLC's	1.00	EA			\$12,253.00	\$12,253	
176	I&C Conduit & Wire	396.11	LF	120.73	m	\$11.30	\$4,477	
177	Allowance for Misc Items	10%				\$57,352.92	\$5,735	
178	Subtotal							\$63,088
179								
180	CONVEYING SYSTEMS:							
181	Monorail Hoist (3 Ton)	1.00	EA			\$66,120.59	\$66,121	
182	Hoist Rail	73.84	LF	22.51	m	\$34.34	\$2,536	
183	Allowance for Misc Items	10%				\$68,656.38	\$6,866	
184	Subtotal							\$75,522
185								
186	MECHANICAL:							
187	Pipe:							
188	Rapid Mix Pipe (30-Inch, RW, Exposed, Steel, Cement Mortar, Paint)	25.00	LF	7.62	m	\$649.84	\$16,246	
189	Flow Control Pipe (16-inch, FCP, Exposed, Steel, Cement Mortar, Paint)	10.67	LF	3.25	m	\$346.58	\$3,697	
190	Elbows:							
191	Rapid Mix Pipe (30-inch)	2.00	EA			\$3,613.66	\$7,827	
192	Valves:							
193	Rapid Mix Isolation Valves (30-inch)	2.00	EA			\$28,623.54	\$57,247	
194	Flow Control Valve (16-inch)	1.00	EA			\$15,385.89	\$15,266	
195	Allowance for Misc Items	10%				\$100,283.29	\$10,028	
196	Subtotal							\$110,312
197								
198	ELECTRICAL:							
199	MCC's							
200	Sections	5.00	EA			\$8,044.96	\$15,000	\$15,000.00
201	AFD's							
202	Mechanical Mixers (9 hp each)	0.00	EA			\$9,414.68	\$0	
203	Switchgear							
204	Units	0.00	EA			\$37,006.81	\$0	
205	Electrical Conduit & Wire	56.59	LF	17.25	m	\$71.30	\$640	
206	Allowance for Misc Items	10%				\$15,639.51	\$1,564	
207	Subtotal							\$17,203
208								
209	USER DEFINED ESTIMATE ITEMS:	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT	TOTAL COST	
210	Item 1 Description	0.00		0.00		0.00	\$0	
211	Item 2 Description	0.00		0.00		0.00	\$0	
212	Item 3 Description	0.00		0.00		0.00	\$0	
213	Item 4 Description	0.00		0.00		0.00	\$0	
214	Item 5 Description	0.00		0.00		0.00	\$0	
215	Item 6 Description	0.00		0.00		0.00	\$0	
216	Item 7 Description	0.00		0.00		0.00	\$0	
217	Item 8 Description	0.00		0.00		0.00	\$0	
218	Item 9 Description	0.00		0.00		0.00	\$0	
219	Item 10 Description	0.00		0.00		0.00	\$0	
220	Item 11 Description	0.00		0.00		0.00	\$0	
221	Item 12 Description	0.00		0.00		0.00	\$0	
222	Item 13 Description	0.00		0.00		0.00	\$0	
223	Item 14 Description	0.00		0.00		0.00	\$0	
224	Item 15 Description	0.00		0.00		0.00	\$0	
225	Subtotal							
226								\$483,163
227	Subtotal							
228								
229	ALLOWANCES		User Override					
230	Finishes Allowance	2.00%				\$549,049	\$10,981	
231	I&C Allowance	5.00%				\$549,049	\$27,452	
232	Mechanical Allowance	0.00%				\$549,049	\$0	
233	Electrical Allowance	5.00%				\$549,049	\$27,452	
234							Facility Cost Name	
235	Facility Cost	12,000,000	GPD	\$0.05		\$549,049	RMIFC01	
236	Facility Cost with Standard Additional Project Costs Added	12,000,000	GPD	\$0.05		\$549,049	RMIFC02	
237	Facility Cost with Standard Additional Project Costs and Contractor Markups Added	12,000,000	GPD	\$0.07		\$817,270	RMIFC03	
238	Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	12,000,000	GPD	\$0.07		\$801,772	RMIFC05	
239	Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	12,000,000	GPD	\$0.07		\$801,772	RMIFC06	

Flocculation

	B	C	D	E	F	G	H	I
1	Flocculation (Horizontal Paddle Wheel Flocculation for Downstream Sedimentation)							
2								
3								
4	Assumptions.							
5								
6	Based on Denver Water Reuse Project							
7	2 Basins @ 15 MGD each							
8	If this is a Seawater Desalination Application, the materials in contact with seawater need to be corrosion resistant.							
9	NOTE TO USER: The Lamella Plate Clarifier should be sized before working on the Flocculation model.							
10								
11	Process User Inputs		Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags
12	Is this a Seawater Desalination Application?		No	Y/N				
13	Has the USER Contacted Equipment Suppliers to Obtain Equipment Quotes?		No	Y/N				
14	Input Total Flocculation Flow Rate		12.00	mgd	45.42	ML/d		
15	Conversion of Total Flocculation Flow Rate		8,333.28	gpm	525.75	L/s		
16	Conversion of Total Flocculation Flow Rate		18.57	cfs	0.53	m ³ /s		
17	Input Number of Active Flocculation Trains		2	#				
18	Input Number of Standby Flocculation Trains		0	#				Typically 0.
19	Calculate Total Number of Flocculation Trains		2	#			NT	
20	Input Flocculation Detention Time		20.00	min				
21	Input Number of Flocculation Basin Stages per Train		2	#			NFS	
22	Calculate Flocculation Basin Water Volume per Train		11,139.98	cf	315.45	m ³		Valid Range: 1 - 6.
23	Calculate Flocculation Stage Water Volume		5,569.99	cf	157.72	m ³		
24	Select Flocculation Baffle Type		O/U	Type				
25	Input Flocculation Basin Internal Width (W) in Seawater Desalination Supplies		15.00	ft	4,572.00	mm	IBW	
26	Calculate Flocculation Basin Internal Width (W) in ft		15.00	ft	5.50	m	IBW	
27	Input Internal Flocculation Basin / Stage Width per Train = Lamella Plate Clarifier Train Width (W)		15.00	ft	4,572.00	mm	IBW	If using DAF Clarifier, the Flocculation Basin / Stage Width should equal DAF Clarifier Stage Width. For information, the DAF Basin Width can be found in cell C46 of the Lamella Clarifier model.
28	Calculate Stage Length		19.27	ft	5,873.49	mm	SL	
29	Calculate Side Water Depth		19.27	ft	5,873.49	mm	SWD	Equal to Stage Length.
30	Input Flocculator Equipment Type		VP	Type				For VP and VT, the flocculation stage length must be less than 20-feet.
31	Input Flocculation Basin Internal Width (W) in ft		15.00	ft	4,572.00	mm	IBW	
32	Number of Baffle Walls per Train		1	#				
33	Include Influent Channel?		No	Y/N				
34	Input Influent Channel Length		39.54	ft	12,051.79	mm	IBL	
35	Calculate Internal Flocculation Basin Length per Train		39.54	ft	609.60	mm	IBL	
36	Input Basin Freeboard		3.00	ft	6,787.89	mm	FB	Valid Range: 1-3 ft.
37	Calculate Basin Depth		22.27	ft				
38	Input Parameter Operator Deck Walkway Width		4.00	ft	1,219.20	mm	WWW	Typically 4 to 8 ft.
39	Input Central Operator Deck Walkway Width		4.00	ft	1,219.20	mm	WWWC	Typically 8 to 12 ft.
40	Include Building over Basin?		No	Y/N				
41	Input Structure Depth of Burial		0.00	ft				
42	Input Cutback Slope		1.00	1				Cutback slope should be 1:1 for d of burial ≤ 5 ft, and at least 1.5:1 if depth of burial > 5 ft.
43	Input Over Excavation Depth		1.00	ft	0.00	mm		
44	Input Horizontal Depth (W) in ft. Max Number of Basins per Stage		5	#			NBS	
45	Calculate Number of Flocculation Basin External Stages		0.7	#				
46	Calculate Number of Paddle Wheel or Vertical Turbine Mixers		0.00	ft	0.00	mm	MD	
47	Conversion from ft to mm		0.00	ft	0.00	mm	FBM	
48	Input ft to ft		0.00	ft	0.00	mm		
49	Conversion from ft to mm		0.00	ft	0.00	mm	FB	
50	Input ft to ft		0.00	ft	0.00	mm	FB	
51	Input ft to ft		0.00	ft	0.00	mm	FB	Valid Range: 0 to 20 ft.
52	For Vertical Paddle Wheel or Vertical Turbine Calculate Number of Mixers per Stage		1	#				
53	For Vertical Paddle Wheel or Vertical Turbine, Calculate Number of Mixers per Train		2	#				
54	For Vertical Paddle Wheel or Vertical Turbine, Calculate Total Number of Mixers per All Trains		4	#				
55	For Vertical Paddle Wheel or Vertical Turbine, Calculate Mixer Diameter, Each		9.00	ft	2,743.20	mm	MD	
56	For Vertical Paddle Wheel or Vertical Turbine, Calculate Distance Between Mixers		3.00	ft	914.40	mm	DBM	
57	Input Stage 1 Velocity Gradient		60.00	sec ⁻¹				
58	Input Stage 2 Velocity Gradient		40.00	sec ⁻¹				
59	Input Stage 3 Velocity Gradient		25.60	sec ⁻¹				
60	Input Stage 4 Velocity Gradient		16.00	sec ⁻¹				
61	Input Stage 5 Velocity Gradient		10.64	sec ⁻¹				
62	Input Stage 6 Velocity Gradient		6.40	sec ⁻¹				
63	Input Water to Water Flocculation Energy Input Efficiency		75%	%				
64	Input min water temperature		32.00	degrees F	0.00	degrees C		Valid Range: 0 - 39 deg C
65	Water Viscosity		0.0000374	lb*s/ft ²	1.79	cP		From Lookup Table
66	Calculate Stage 1 Power per Mixer		2.00	hp	1.49	kW		
67	Calculate Stage 2 Power per Mixer		1.00	hp	0.75	kW		
68	Calculate Stage 3 Power per Mixer		0.60	hp	0.45	kW		
69	Calculate Stage 4 Power per Mixer		0.40	hp	0.30	kW		
70	Calculate Stage 5 Power per Mixer		0.26	hp	0.19	kW		
71	Calculate Stage 6 Power per Mixer		0.16	hp	0.10	kW		
72								

B	C	D	E	F	G	H	I
73 Electrical User Inputs and Sizing Requirements:							
74 Is this a "Critical" Facility (requiring standby power)?	No	Y/N					
75 Is there SWGR?	No						
76							MCC
Item	Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 50hp	MCC Spaces for Breakers	Total MCC Spaces
77							
78 Flocculation Mixers Stage 1 (total facility)	2.00	2.00	Yes	0.00	6.00	4.00	
79 Flocculation Mixers Stage 2 (total facility)	2.00	1.00	Yes	0.00	6.00	4.00	
80 Flocculation Mixers Stage 3 (total facility)	0.00	0.00	No	0.00	0.00	0.00	
81 Flocculation Mixers Stage 4 (total facility)	0.00	0.00	No	0.00	0.00	0.00	
82 Flocculation Mixers Stage 5 (total facility)	0.00	0.00	No	0.00	0.00	0.00	
83 Flocculation Mixers Stage 6 (total facility)	0.00	0.00	No	0.00	0.00	0.00	
84 User Defined Item #1	0.00	0.00	No	0.00	0.00	0.00	
85 User Defined Item #2	0.00	0.00	No	0.00	0.00	0.00	
86 User Defined Item #3	0.00	0.00	No	0.00	0.00	0.00	
87 TOTAL		6.00		0.00	12.00	8.00	20.00
88							
89 Electrical Equipment Widths:							
90 Equipment	Depth (ft)						
91 MCC	1.67						
92 Small AFD's	0.00						
93 Large AFD's	0.00						
94 Switchgear	0.00						
95 Maximum Depth	1.67						
96							
97 Clear Distances:							
98 Clear Distance	Width	Length	Comment				
99 CD1		3.00	Clear Distance between wall and MCC	Typically 3 feet			
100 CD2		1.00	Clear Distance between MCC and Small AFD	Typically 1 foot			
101 CD3		0.00	Clear Distance between Small AFD and Large AFD	Typically Zero			
102 CD4		0.00	Clear Distance between Large AFD and Switchgear	Typically Zero			
103 CD5		0.00	Clear Distance between Switchgear and Contingency Space	Typically Zero			
104 CD6	4.00		Clear Distance behind Switchgear (If there is				
105 CD7	3.00		Clear Distance in front of Equipment	Typically 3 feet			
106 Contingency Length		0.00	Contingency length	Typically Zero			
107							
108 Electric Room Length (ft)							
109 CD1	3.00						
110 MCC	10.00						
111 CD2	1.00						
112 Small AFD's	0.00						
113 CD3	0.00						
114 Large AFD's	0.00						
115 CD4	0.00						
116 Switchgear	0.00						
117 CD5	0.00						
118 Contingency	0.00						
119 Total Length	14.00						
120							
121 Electric Room Width (ft)							
122 CD6	0.00		If there is no switchgear, this distance will be Zero.				
123 Maximum Equipment Depth	1.67						
124 CD7	3.00						
125 Total Width	4.67						
126							
Estimating Dimensions (per trian):	Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
127							
128							
129 Influent Channel:							
130 Slab on Grade:							
131 Concrete Thickness	24.00	in	609.60	mm			Use Wall Thickness Spreadsheet to Adjust Based on Overall Wall Height and Depth of Burial Model based on 24"
132 Concrete Thickness	0.00	ft	0.00	mm	TIC50G		
133 SOG Length	0.00	ft	0.00	mm			
134 SOG Width	0.00	ft	0.00	mm			
135 Channel Walls:							
136 Concrete Thickness	18.00	in	457.20	mm			Use Wall Thickness Spreadsheet to Adjust Based on Overall Wall Height and Depth of Burial Model based on 18"
137 Concrete Thickness	0.00	ft	0.00	mm	TWIC		
138 Wall Length	0.00	ft	0.00	mm			
139 Wall Height	0.00	ft	0.00	mm			
140 Elevated Slab:							
141 Concrete Thickness	12.00	in	304.80	mm			Model based on 12"
142 Concrete Thickness	0.00	ft	0.00	mm			
143 Elevated Slab Length	0.00	ft	0.00	mm			
144 Elevated Slab Width	0.00	ft	0.00	mm			
145							
146 Flocculation Basin:							
147 Slab on Grade:							
148 Concrete Thickness	24.00	in	609.60	mm			Use Wall Thickness Spreadsheet to Adjust Based on Overall Wall Height and Depth of Burial Model based on 24"
149 Concrete Thickness	2.00	ft	609.60	mm	TFBSOG		
150 SOG Length	43.04	ft	13,118.59	mm			
151 SOG Width	38.50	ft	11,734.80	mm			
152 Basin Walls:							
153 Concrete Thickness	18.00	in	457.20	mm			Use Wall Thickness Spreadsheet to Adjust Based on Overall Wall Height and Depth of Burial Model based on 18"
154 Concrete Thickness	1.50	ft	457.20	mm	TWF8		

B	C	D	E	F	G	H	I
155 Wall Length	153.12	ft	46,670.96	mm			If flocc basin shares a common wall with downstream facility, then common wall is counted with downstream facility
156 Wall Height	22.27	ft	6,787.89	mm			
157 Baffle Walls:							
158 Concrete Thickness	12.00	in	304.80	mm			Model based on 12"
159 Concrete Thickness	1.00	ft	304.80	mm	BWTF		
160 Wall Width per Train	15.00	ft	4,572.00	mm	BWL		
161 Quantity of Over Baffle Walls per Train	0	#					
162 Quantity of Under Baffle Walls per Train	1	#					
163 Quantity of Under Baffle Walls per Train	0	#					
164 Over Baffle Wall Length per Facility	0.00	ft	0.00	mm			
165 Under Baffle Wall Length per Facility	30.00	ft	9,144.00	mm			
166 Serpentine Baffle Wall Length per Facility	0.00	ft	0.00	mm			
167 Over Baffle Wall Height	17.27	ft	5,263.89	mm			Assumes top of wall 2 ft below Wf
168 Under Baffle Wall Height	21.27	ft	6,483.09	mm			Assumes bottom of wall 1 ft above basin floor.
169 Serpentine Baffle Wall Height	0.00	ft	0.00	mm			
170 Elevated Slab:							
171 Concrete Thickness	12.00	in	304.80	mm			Model based on 12"
172 Concrete Thickness	1.00	ft	304.80	mm	TESLC		
173 Center Walkway							
174 Elevated Slab Width	4.00	ft	1,219.20	mm			
175 Elevated Slab Length per 2 Trains	31.54	ft	9,613.39	mm			
176 Elevated Slab Length per Facility	31.54	ft	9,613.39	mm			
177 Perimeter and Baffle Wall Walkway							
178 Elevated Slab Width at Perimeter	5.50	ft	1,676.40	mm			Includes basin wall thickness.
179 Elevated Slab Length at Perimeter per Facility	132.08	ft	40,257.97	mm			
180 Elevated Slab Width at Baffle Wall	4.00	ft	1,219.20	mm			For VP and VT flocc basin mixing only.
181 Elevated Slab Length at Baffle Wall per Facility	16.50	ft	5,029.20	mm			For VP and VT flocc basin mixing only.
182							
183 Electrical Room Slab on Grade:							
184 Concrete Thickness	12.00	in	304.80	mm			Model based on 12"
185 Concrete Thickness	1.00	ft	304.80	mm			
186							
187 Overall Dimensions:							
188 Total Basin/Building Length	41.04	ft	12,508.99	mm	TBL		
189 Total Basin/Building Width	34.50	ft	10,515.60	mm	TBW		
190 SOG Length	43.04	ft	13,118.59	mm			
191 SOG Width	38.50	ft	11,734.80	mm			
192 Electrical Room Length	14.00	ft	4,267.20	mm			
193 Electrical Room Width	4.67	ft	1,422.40	mm			
194 Excavation Length	47.04	ft	14,337.79	mm			
195 Excavation Width	42.50	ft	12,954.00	mm			
196 Excavation Depth	3.00	ft	914.40	mm			
197							
198							
199 Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
200							
201 SITWORK:							
202 Excavation	282	CY	215.77	m3	\$8.35	\$1,792	
203 Imported Structural Backfill	148	CY	113.22	m3	\$48.10	\$7,123	
204 Native Backfill	30	CY	22.82	m3	\$7.80	\$233	
205 Haul Excess	252	CY	192.95	m3	\$7.80	\$1,970	
206 Allowance for Misc Items	5%				\$11,116.99	\$556	
207 Subtotal						\$11,673	
208							
209 CONCRETE:							
210 Influent Channel:							
211 Foundation	0	CY	0.00	m3	\$393.62	\$0	
212 Walls	0	CY	0.00	m3	\$704.01	\$0	
213 Elevated Slab	0	CY	0.00	m3	\$1,121.35	\$0	
214 Flocc Basin							
215 Foundation	123	CY	93.84	m3	\$393.62	\$48,315	
216 Basin Walls	189	CY	144.84	m3	\$704.01	\$133,369	
217 Over Baffle Wall	0	CY	0.00	m3	\$704.01	\$0	
218 Under Baffle Wall	24	CY	18.07	m3	\$704.01	\$16,638	
219 Serpentine Baffle Wall	0	CY	0.00	m3	\$704.01	\$0	
220 Elevated Slab	34	CY	26.01	m3	\$1,121.35	\$38,151	
221 Flocc Bearing Supports	0	EA			\$0.00	\$0	
222 Electrical Room							
223 Slab on Grade	2	CY	1.85	m3	\$358.31	\$862	
224 Allowance for Misc Items	5%				\$237,334.97	\$11,867	
225 Subtotal						\$249,202	
226							
227 MASONRY:							
228 CMU Building	0	SF	0.00	m2	\$158.08	\$0	
229 Electrical Room	65	SF	6.07	m2	\$158.08	\$10,197	
230 Subtotal	65					\$10,197	
231							
232 METALS:							
233 Aluminum Handrail	339	LF	103.40	m	\$85.85	\$29,122	
234 Stairs (1 set per basin)	70	RISERS			\$468.25	\$32,688	
235 Allowance for Misc Items	10%				\$61,810.60	\$6,181	
236 Subtotal						\$67,992	
237							
238 WOODS & PLASTICS:							
239 FRP Weir	30	LF	9.14	m	\$39.02	\$1,171	
240 FRP Ladder	4	EA			\$2,259.38	\$9,038	
241 Allowance for Misc Items	5%				\$10,208.15	\$510	
242 Subtotal						\$10,719	
243							
244 THERMAL & MOISTURE PROTECTION:							
245 Concrete Liner	0	SF	0.00	m2	\$16.00	\$0	

B	C	D	E	F	G	H	I
246 Allowance for Misc Items	10%				\$0.00	\$0	
247 Subtotal						\$0	
248							
249 DOORS & WINDOWS							
250 Stainless Steel Door (2' x 2') for O/U Baffling	0	EA			\$1,248.87	\$0	
251 Stainless Steel Door (7' x 2.5') for O/U Baffling	2	EA			\$5,462.91	\$10,926	
252 Stainless Steel Door (2' x 2') for Serpentine Baffling	0	EA			\$1,248.67	\$0	
253 Allowance for Misc Items	5%				\$10,925.83	\$546	
254 Subtotal						\$11,472	
255							
256 EQUIPMENT:							Budgetary Quota: (CPES will automatically add Installation Factor)
257 Horizontal Paddle Wheel Flocculation Mechanism (Paddles & Drives)	0	LF	0.00	m	\$0.00	\$0	
258 Vertical Paddle Wheel Flocculation Mechanism (Paddles & Drives)	4	EA			\$33,159.54	\$132,638	
259 Vertical Turbine Flocculation Mechanism (Turbines & Drives)	0	hp	0.00	kW	\$0.00	\$0	
260 Vertical Turbine Flocculator VFD's	0	hp	0.00	kW	\$0.00	\$0	
261 Fabricated Slide Gate	2	EA			\$7,208.60	\$14,417	
262 Allowance for Misc Items	10%				\$147,055.34	\$14,706	
263 Subtotal						\$161,761	
264							
265 ELECTRICAL:							
266 MCC's							
267 Sections	6	EA			\$8,044.96	\$48,270	
268 AFD's							
269 Flocculation Mixers Stage 1 (total facility) (2 hp each)	2	EA			\$8,554.42	\$17,109	
270 Flocculation Mixers Stage 2 (total facility) (1 hp each)	2	EA			\$8,431.52	\$16,863	
271 Flocculation Mixers Stage 3 (total facility) (0 hp each)	0	EA			\$8,308.63	\$0	
272 Flocculation Mixers Stage 4 (total facility) (0 hp each)	0	EA			\$8,308.63	\$0	
273 Flocculation Mixers Stage 5 (total facility) (0 hp each)	0	EA			\$8,308.63	\$0	
274 Flocculation Mixers Stage 6 (total facility) (0 hp each)	0	EA			\$8,308.63	\$0	
275 Switchgear							
276 Units	0	EA			\$37,006.81	\$0	
277 Electrical Conduit & Wire	308	LF	93.88	m	\$11.30	\$3,481	
278 Allowance for Misc Items	10%				\$85,722.47	\$8,572	
279 Subtotal						\$94,295	
280							
281 INSTRUMENTS & CONTROLS							
282 Instruments							
283 Level Switch	2	EA			\$651.76	\$1,304	
284 Number of Analog I/O Counts	10	EA			\$247.87	\$2,378	
285 Number of Digital I/O Counts	24	EA			\$58.66	\$1,408	
286 Number of PLC's	1	EA			\$72,253.00	\$12,253	
287 I&C Conduit & Wire	414	LF	126.19	m	\$11.30	\$4,679	
288 Allowance for Misc Items	10%				\$22,020.71	\$2,202	
289 Subtotal						\$24,223	
290							
291 USER DEFINED ESTIMATE ITEMS:	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT	TOTAL COST	
292 Item 1 Description	0.00		0.00		0.00	\$0	
293 Item 2 Description	0.00		0.00		0.00	\$0	
294 Item 3 Description	0.00		0.00		0.00	\$0	
295 Item 4 Description	0.00		0.00		0.00	\$0	
296 Item 5 Description	0.00		0.00		0.00	\$0	
297 Item 6 Description	0.00		0.00		0.00	\$0	
298 Item 7 Description	0.00		0.00		0.00	\$0	
299 Item 8 Description	0.00		0.00		0.00	\$0	
300 Item 9 Description	0.00		0.00		0.00	\$0	
301 Item 10 Description	0.00		0.00		0.00	\$0	
302 Item 11 Description	0.00		0.00		0.00	\$0	
303 Item 12 Description	0.00		0.00		0.00	\$0	
304 Item 13 Description	0.00		0.00		0.00	\$0	
305 Item 14 Description	0.00		0.00		0.00	\$0	
306 Item 15 Description	0.00		0.00		0.00	\$0	
307 Subtotal						\$0	
308						\$641,533	
309 Subtotal							
310							
311 ALLOWANCES:	User Override						
312 Finishes Allowance	2.00%				\$697,318	\$13,946	
313 I&C Allowance	2.00%				\$697,318	\$13,946	
314 Mechanical Allowance	2.00%				\$697,318	\$13,946	
315 Electrical Allowance	2.00%				\$697,318	\$13,946	
316							Facility Cost Name
317 Facility Cost	12,000,000	GPD	\$0.06		\$697,318	FCPFC01	
318 Facility Cost with Standard Additional Project Costs Added	12,000,000	GPD	\$0.06		\$697,318	FCPFC02	
319 Facility Cost with Standard Additional Project Costs and Contractor Markups Added	12,000,000	GPD	\$0.09		\$1,037,983	FCPFC03	
320 Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	12,000,000	GPD	\$0.08		\$1,018,289	FCPFC05	
321 Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	12,000,000	GPD	\$0.08		\$1,018,289	FCPFC06	

	B	C	D	E	F	G	H	I
1	Lamella Clarifier							
2								
3								
4	Assumptions:							
5								
6	Based on Denver Water Reuse Project							
7	2 Basins @ 15 MGD each							
8	If this is a Seawater Desalination Application, the materials in contact with seawater need to be corrosion resistant.							
9								
10								
11	Process User Inputs	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
12	Is this a Seawater Desalination Application?	No	Y/N					
13	Has the USER Contacted Equipment Suppliers to Obtain Equipment Quotes?	No	Y/N					Fixed
14	Total Plant Flow	12.00	mgd	45.42	ML/d			
15	Conversion of Total Plant Flow	8,333.28	gpm	525.75	L/s			
16	Input Number of Active Trains	2	#					
17	Input Number of Standby Trains	0	#					Typically 0
18	Calculate Total Number of Trains	2	#			NT		
19	Total Plate Length	9.75	ft	2,971.80	mm	TPL		MRI = 9.75 ft
20	Wet Plate Length	9.75	ft	2,971.80	mm			MRI = 9.75 ft
21	Plate Width	5.04	ft	1,536.80	mm	PW		MRI = 5.042 ft
22	Plate Angle	55.00	degrees					Fixed
23	Conversion of Plate Angle	0.98	radians			PAR		
24	Effective Plate Area	95.00%	%					Parkson GEWE or MRI = 95%
25	Calculate Projected Effective Plate Area	26.79	sf	2.49	m ²			
26	Projected Plate Hydraulic Loading Rate	0.30	gpm/sf	0.75	m ³ /h			Valid Range <= 0.40 gpm/sf
27	Calculate Number of Plates per Train	518.49	#					
28	Perpendicular Plate Spacing	2.44	in	61.98	mm			Typically 2.44 in
29	Conversion of Plate Spacing	0.20	ft	51.98	mm	PSF		
30	Plate Thickness	0.70	mm	0.70	mm	PT		Fixed
31	Conversion of Plate Thickness	0.00	ft	0.70	mm			
32	Number of Plates per Row	160	#			PPR		Valid Range 0 - 200
33	Plate Effluent Channel Width	1.50	ft	457.20	mm	EFW		Fixed
34	Conversion of Total Plant Flow	18.57	cfs	0.53	m ³ /s			
35	Calculate Plant Flow per Train	9.28	cfs	0.26	m ³ /s			
36	Calculate Plant Flow per Row	2.32	cfs	0.07	m ³ /s			
37	Calculate Velocity per Row	0.13	fps	0.04	m/s			Should be ≤ 0.2 fps. If not, reduce Number of Plates per Row (#P/R)
38	Additional Length for Sludge Removal Mechanism and Stable Inflow (varies by manufacturer, MRI typically adds 15 feet)	15.00	ft	1,536.80	mm			MRI = 15 ft
	Calculate Internal Basin Length	60.68	ft	18,493.95	mm	PRL	Warning! Basin length greater than recommended maximum of 40 ft.	Must be less than 40 ft to allow cspan of plate system without intermediate supports that compl. structural design and sludge colle integration
39								
40	Calculate No. of Rows per Train	4	#			PRT		
41	No of Effluent Channels]	4	#					
42	Input Perimeter Operator Deck Walkway Width	4.00	ft	1,219.20	mm	WWW		Typically 4 to 8 ft.
43	Input Central Operator Deck Walkway Width	4.00	ft	1,219.20	mm			Typically 8 to 12 ft.
44	Sludge Collector Removal Opening Width	4.00	ft	1,219.20	mm	OW		Typically 4 to 6 ft.
45	Plate Removal Opening Width	1.00	ft	304.80	mm	POW		Typically 0.5 to 1 ft.
	Calculate Internal Basin Width	41.17	ft	12,548.01	mm	IBW		Should be ≤ 120 ft. If not, add more Trains and / or add more Plates per Row
46								Valid range 3-10 ft.
47	Minimum Clearance Beneath Plate System	5.00	ft	1,828.80	mm	MCB		
48	Freeboard	2.00	ft	609.60	mm	FB		
49	Calculate Basin Depth	16.99	ft	5,177.56	mm			
50	Input Structure Depth of Burial	0.00	ft					
51	Select # of Sludge Collectors per Train	2	#					Sludge collector flow = 250 gpm.
52	Sludge Collector Curb Width	12.00	in	304.80	mm			Fixed
53	Conversion of Sludge Collector Curb Width	1.00	ft	304.80	mm			
54	Sludge Collector Distance from Wall or Curb	12.00	in	304.80	mm			Fixed
55	Conversion of Sludge Collector Distance from Wall or Curb	1.00	ft	304.80	mm			
56	Calculate Sludge Collector Width	27.84	ft	8,484.98	mm			Acceptable range of values is 8-30 ft.
57	Include Influent Channel?	Yes	Y/N					
58	Combined Influent Channel Width	3.00	ft	914.40	mm	CICW		
59	Include Effluent Channel?	Yes	Y/N					
60	Combined Effluent Channel Width	3.00	ft	914.40	mm	CEWW		Valid range ≥ 3 ft.
61	Include Building over Basin?	No	Y/N					
	Input Cutback Slope	1.00	1					Cutback slope should be 1:1 for burial ≤ 5 ft, and at least 1:1.5 for burial > 5 ft.
62								
63	Input Over Excavation Depth	1.00	ft	0.00	mm			
64	Mechanical Sizing Requirements:							
65	Pipe Name	Input Velocity	Unit (English)	Input Velocity	Unit (Metric)	Standard Pipe Size	Unit (English)	Nominal Pipe Size
66	Solids Collection Pipe	6.00	fps	1.83	m/s	4.00	in	100.00
67								
68	Mechanical Material Requirements:							
69	Pipe Name	Pipe ID	Installation Type	Pipe Material	Pipe Lining Material	Pipe Coating Material	Pipe Diameter	Pipe Length
70	Solids Collection Pipe	USL	immersed	Steel	None	None	4.00	407.37
71								
72	Electrical User Inputs and Sizing Requirements:							
73	24.) Is this a "Critical" Facility (requiring standby power)?	No	Y/N					
74	25.) Is there SWGR?	No						
75	Item	Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 50hp)	MCC Spaces for Breakers	MCC
76								Total MCC Spaces
77	Sludge Collectors (total facility)	4.00	1.00	No	8.00	0.00	0.00	
78	User Defined Item #1	0.00	0.00	No	0.00	0.00	0.00	
79	User Defined Item #2	0.00	0.00	No	0.00	0.00	0.00	

B	C	D	E	F	G	H	I
80 User Defined Item #3	0.00	0.00	No	0.00	0.00	0.00	
81 TOTAL		4.00		8.00	0.00	0.00	8.00
82							
83 Electrical Equipment Widths:							
84 Equipment	Depth (ft)						
85 MCC	1.67						
86 Small AFD's	0.00						
87 Large AFD's	0.00						
88 Switchgear	0.00						
89 Maximum Depth	1.67						
90							
91 Clear Distances:							
92 Clear Distance	Width	Length	Comment				
93 CD1		3.00	Clear Distance between wall and MCC	Typically 3 feet			
94 CD2		1.00	Clear Distance between MCC and Small AFD	Typically 1 foot			
95 CD3		0.00	Clear Distance between Small AFD and Large AFD	Typically Zero			
96 CD4		0.00	Clear Distance between Large AFD and Switchgear	Typically Zero			
97 CD5		0.00	Clear Distance between Switchgear and Contingency Space	Typically Zero			
98 CD6	4.00		Clear Distance behind Switchgear (if there is AFD)				
99 CD7	3.00		Clear Distance in front of Equipment	Typically 3 feet			
100 Contingency Length		0.00	Contingency length	Typically Zero			
101							
102 Electric Room Length (ft):							
103 CD1	3.00						
104 MCC	8.33						
105 CD2	1.00						
106 Small AFD's	0.00						
107 CD3	0.00						
108 Large AFD's	0.00						
109 CD4	0.00						
110 Switchgear	0.00						
111 CD5	0.00						
112 Contingency	0.00						
113 Total Length	12.33						
114							
115 Electric Room Width (ft):							
116 CD6	0.00		If there is no switchgear, this distance will be Zero				
117 Maximum Equipment Depth	1.67						
118 CD7	3.00						
119 Total Width	4.67						
120							
121 Estimating Dimensions (per train):	Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
122							
123 Influent Channel:							
124 Slab on Grade:							
125 Concrete Thickness	24.00	in	584.20	mm			Model based on 24"
126 Concrete Thickness	2.00	ft	609.60	mm	TSOGIC		
127 SOG Length	6.50	ft	1,981.20	mm			
128 SOG Width	90.84	ft	27,686.81	mm			
129 Walls:							
130 Concrete Thickness	18.00	in	457.20	mm			Model based on 18"
131 Concrete Thickness	1.50	ft	457.20	mm	TWIC		
132 Wall Length	179.57	ft	54,764.03	mm			
133 Wall Height	16.99	ft	5,177.56	mm			
134 Elevated Slab:							
135 Concrete Thickness	12.00	in	304.80	mm			Model based on 12"
136 Concrete Thickness	1.00	ft	304.80	mm	TESIC		
137 Elevated Slab Length	6.00	ft	1,828.80	mm			
138 Elevated Slab Width	86.84	ft	26,467.61	mm			
139							
140 Lamella Clarifier Basin							
141 Slab on Grade:							
142 Concrete Thickness	24.00	in	304.80	mm			Model based on 24"
143 Concrete Thickness	2.00	ft	609.60	mm	TSOGLC		
144 SOG Length	67.68	ft	20,627.55	mm			
145 SOG Width	90.84	ft	27,686.81	mm			
146 Walls:							
147 Concrete Thickness	18.00	in	457.20	mm			Model based on 18"
148 Concrete Thickness	1.50	ft	457.20	mm	TWLC		
149 Wall Length	200.03	ft	60,968.26	mm			
150 Wall Height	16.99	ft	5,177.56	mm			
151 Elevated Slab:							
152 Concrete Thickness	12.00	in	304.80	mm			Model based on 12"
153 Concrete Thickness	1.00	ft	304.80	mm	TESLC		
154 Elevated Slab Width	4.00	ft	1,219.20	mm			
155 Center Walkway:							
156 Elevated Slab Width	4.00	ft	1,219.20	mm	WWWC		
157 Elevated Slab Length per 2 Trains	60.58	ft	18,493.95	mm			
158 Elevated Slab Length per Facility	60.68	ft	18,493.95	mm			
159 Perimeter Walkway:							
160 Elevated Slab Width	5.50	ft	1,676.40	mm			
161 Elevated Slab Length per Facility	121.35	ft	36,987.90	mm			
162							
163 Effluent Channel:							
164 Slab on Grade:							
165 Concrete Thickness	24.00	in	609.60	mm			Model based on 24"
166 Concrete Thickness	2.00	ft	609.60	mm	TSOGEC		
167 SOG Length	6.50	ft	1,981.20	mm			
168 SOG Width	90.84	ft	27,686.81	mm			
169 Walls:							
170 Concrete Thickness	18.00	in	457.20	mm			Model based on 18"

	B	C	D	E	F	G	H	I
171	Concrete Thickness	1.50	ft	457.20	mm	TWEC		
172	Wall Length	173.67	ft	52,935.23	mm			
173	Wall Height	16.99	ft	5,177.56	mm			
174	Elevated Slab:							
175	Concrete Thickness	12.00	in	304.80	mm			Model based on 12"
176	Concrete Thickness	1.00	ft	304.80	mm	TESEC		
177	Elevated Slab Length	6.00	ft	1,828.80	mm			
178	Elevated Slab Width	86.84	ft	26,467.61	mm			
179								
180	Electrical Room Slab on Grade:							
181	Concrete Thickness	12.00	in	304.80	mm			Model based on 12"
182	Concrete Thickness	1.00	ft	304.80	mm			
183								
184	Overall Dimensions:							
185	Total Basin/Building Length	72.68	ft	22,151.55	mm	LTB		
186	Total Basin/Building Width	86.84	ft	26,467.61	mm	WTB		
187	SOG Length	76.68	ft	23,370.75	mm			
188	SOG Width	90.84	ft	27,686.81	mm			
189	Electrical Room Length	12.33	ft	3,759.20	mm			
190	Electrical Room Width	4.67	ft	1,422.40	mm			
191	Excavation Length	80.68	ft	24,589.95	mm			
192	Excavation Width	94.84	ft	28,906.01	mm			
193	Excavation Depth	4.00	ft	1,219.20	mm			
194								
195								
196	Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
197								
198	SITEWORK:							
199	Excavation	2,772	CY	2,119.32	m ³	\$6.35	\$17,596	
200	Imported Structural Backfill	1,133	CY	866.60	m ³	\$48.10	\$54,520	
201	Native Backfill	208	CY	159.04	m ³	\$7.80	\$1,623	
202	Haul Excess	2,564	CY	1,960.28	m ³	\$7.80	\$20,009	
203	Allowance for Misc Items	5%					\$93,748.87	\$4,687
204	Subtotal							\$98,436
205								
206	CONCRETE:							
207	Influent Channel:							
208	Foundation	44	CY	33.44	m ³	\$393.62	\$17,216	
209	Channel Walls	170	CY	129.64	m ³	\$704.01	\$119,370	
210	Elevated Slab	19	CY	14.75	m ³	\$1,121.35	\$21,639	
211	Basin							
212	Foundation	455	CY	348.15	m ³	\$393.62	\$179,242	
213	Channel Walls	189	CY	144.32	m ³	\$704.01	\$132,893	
214	Elevated Slab	34	CY	25.77	m ³	\$1,121.35	\$37,799	
215	Concrete Curb (8" X 8")	82	LF	25.10	m	\$39.02	\$3,213	
216	Effluent Channel:							
217	Foundation	44	CY	33.44	m ³	\$393.62	\$17,216	
218	Walls	164	CY	125.31	m ³	\$704.01	\$115,383	
219	Elevated Slab	19	CY	14.75	m ³	\$1,121.35	\$21,639	
220	Electrical Room							
221	Slab on Grade	2	CY	1.63	m ³	\$356.31	\$760	
222	Allowance for Misc Items	5%					\$666,367.42	\$33,318
223	Subtotal							\$699,686
224								
225	MASONRY:							
226	CMU Building	0	SF	0.00	m ²	\$156.08	\$0	
227	Electrical Room	58	SF	5.35	m ²	\$156.08	\$8,983	
228	Subtotal	58						\$8,983
229								
230	METALS:							
231	Aluminum Handrail	699	LF	213.18	m	\$85.85	\$60,040	
232	Allowance for Misc Items	10%					\$60,040.38	\$6,004
233	Subtotal							\$66,044
234								
235	WOODS & PLASTICS:							
236	FRP Ladder	4	EA			\$1,723.37	\$6,893	
237	Allowance for Misc Items	5%					\$6,893.49	\$345
238	Subtotal							\$7,238
239								
240	THERMAL & MOISTURE PROTECTION:							
241	Concrete Liner	0	SF	0.00	m ²	\$16.00	\$0	
242	Allowance for Misc Items	10%					\$0.00	\$0
243	Subtotal							\$0
244								
245	EQUIPMENT							Budgetary Quote: (CPES will automatically add Installation Factor)
246	Lamella Clarifier	29,240	SF	2,716.45	m ²	\$23.07	\$67,484	
247	Fabricated Slide Gate	2	EA			\$7,208.60	\$14,417	
248	Hoseless Sludge Collector	4	EA			\$79,294.55	\$317,178	
249	Allowance for Misc Items	10%					\$1,006,079.50	\$100,608
250	Subtotal							\$1,106,687
251								
252	INSTRUMENTS & CONTROLS:							
253	Instruments							
254	Turbidimeters	4	EA			\$3,715.89	\$14,864	
255	Number of Analog I/O Counts	5	EA			\$247.67	\$1,239	
256	Number of Digital I/O Counts	24	EA			\$58.66	\$1,408	
257	Number of PLC's	1	EA			\$12,253.00	\$12,253	
258	I&C Conduit & Wire	695	LF	211.74	m	\$11.30	\$7,851	
259	Allowance for Misc Items	10%					\$37,564.14	\$3,756
260	Subtotal							\$41,321
261								
262	MECHANICAL:							
263	Solids Collection Pipe (4-inch, USL, Immersed, Steel)	407	LF	124.17	m	\$70.46	\$31,961	
264	Solids Collection Pipe Elbows	16	EA			\$521.82	\$8,349	
265	Mud Valves	4	EA			\$2,341.26	\$9,365	
266	Allowance for Misc Items	10%					\$49,675.02	\$4,968
267	Subtotal							\$54,643
268								
269	ELECTRICAL:							
270	MCC's							
271	Sections	5	EA			\$8,044.96	\$40,225	
272	AFD's							
273	Sludge Collectors (total facility) (1 hp each)	0	EA			\$8,431.52	\$0	
274	Switchgear							
275	Units	0	EA			\$37,006.81	\$0	

	B	C	D	E	F	G	H	I
	Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
196								
276	Electrical Conduit & Wire	347	LF	105.87	m	\$11.70	\$3,925	
277	Allowance for Misc Items	10%				\$44,150.28	\$4,415	
278	Subtotal						\$48,565	
279								
280	USER DEFINED ESTIMATE ITEMS:	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT	TOTAL COST	
281	Item 1 Description	0.00		0.00		0.00	\$0	
282	Item 2 Description	0.00		0.00		0.00	\$0	
283	Item 3 Description	0.00		0.00		0.00	\$0	
284	Item 4 Description	0.00		0.00		0.00	\$0	
285	Item 5 Description	0.00		0.00		0.00	\$0	
286	Item 6 Description	0.00		0.00		0.00	\$0	
287	Item 7 Description	0.00		0.00		0.00	\$0	
288	Item 8 Description	0.00		0.00		0.00	\$0	
289	Item 9 Description	0.00		0.00		0.00	\$0	
290	Item 10 Description	0.00		0.00		0.00	\$0	
291	Item 11 Description	0.00		0.00		0.00	\$0	
292	Item 12 Description	0.00		0.00		0.00	\$0	
293	Item 13 Description	0.00		0.00		0.00	\$0	
294	Item 14 Description	0.00		0.00		0.00	\$0	
295	Item 15 Description	0.00		0.00		0.00	\$0	
296	Subtotal							\$0
297								
298	Subtotal						\$2,131,604	
299								
300	ALLOWANCES:		User Override					
301	Finishes Allowance	2.00%		\$2,316,961		\$46,339		
302	I&C Allowance	2.00%		\$2,316,961		\$46,339		
303	Mechanical Allowance	2.00%		\$2,316,961		\$46,339	Includes Drain, USL, SA (Sample) piping	
304	Electrical Allowance	2.00%		\$2,316,961		\$46,339		
305						Facility Cost Name		
306	Facility Cost	12,000,000	GPD	\$0.19	\$2,316,961	CLCFC01		
307	Facility Cost with Standard Additional Project Costs Added	12,000,000	GPD	\$0.19	\$2,316,961	CLCFC02		
308	Facility Cost with Standard Additional Project Costs and Contractor Markups Added	12,000,000	GPD	\$0.29	\$3,446,877	CLCFC03		
309	Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	12,000,000	GPD	\$0.28	\$3,383,440	CLCFC05		
310	Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	12,000,000	GPD	\$0.28	\$3,383,440	CLCFC06		

	B	C	D	E	F	G	H	I
1	Brackish Water Reverse Osmosis with Turbocharger							
2	PROCESS DESIGN CRITERIA							
3								
4								
5								
6	BRACKISH WATER REVERSE OSMOSIS SYSTEM							
7	Assumes the use of either a turbocharger or no energy recovery device. Assumes vessels are connected via multiports to Subtrain Headers. Assumes 8", 16" or 18" membrane elements							
8	Process User Inputs:	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Comment	Red Flags
9	BRACKISH WATER RO TRAIN							
10	Input Desired Membrane System Permeate Capacity	8.00	mgd	34.87	ML/d			
11	Input Number of Active Membrane Trains	6.00	#					
12	Input Number of Standby Membrane Trains	1.00	#					
13	Calculate Total Number of Membrane Trains	6.00	#					
14	Calculate RO/NF Train Permeate Capacity (tisch)	1.90	mgd					
15								
16	Input Number of Rows of Membrane Shells	1.00	#					
17	Calculate Number of Membrane Shells per Row	6.00	#					
18	Calculate Number of Rows Full with Membrane Shells	1.00	#					
19	Calculate Number of Available Spaces for Future Membrane Shells	0.00	#					
20	Calculate Number of Active High Pressure Membrane Feed Pumps	5.00	#					
21	Calculate Number of Clarity High Pressure Membrane Feed Pumps	1.00	#					
22	Calculate Total Number of High Pressure Membrane Feed Pumps	6.00	#					
23	Input Type of Energy Recovery Device Used?							
24	Input Number of Stages per Train							
25								
26	Input RO/NF Train Average Train Flow	13.15	gfd					
27	Input Diameter of Membrane Element (each)	18.00	in	487.20	mm			
28	Input Length of Membrane Element (each)	61.00	in	1,454.90	mm			
29	Input Membrane Element Area (each)	2,860.00	sf	284.77	m ²			
30								
31	Input Number of 40"-long Membrane Elements per Pressure Vessel	8.00	#					
32								
33	Input RO/NF Train Average Train Flow Rate	16.00	gfd	28.47	l/mh			
34	Calculate Membrane Train Feed Rate (tisch)	1666.67	gpm					
35	Calculate Membrane Train Permeate Rate (tisch)	1250.00	gpm					
36	Calculate Membrane Train Concentrate Rate (tisch)	416.67	gpm					
37	Input Membrane Element Life	6.00	years					
38	Input RO/NF Train Feed Pressure Required at End of Membrane Life	300.00	psi	1,878.90	kPa			
39								
40	Input RO/NF Train Feed Pressure Required at End of Membrane Life	16.00	psi	103.42	kPa			
41								
42	Input Minimum Feed Pump Suction Pressure	70.00%	%					
43	Input Average Pressure as a Percentage of Pressure at End of Membrane Life	70.00%	%					
44								
45	Calculate Average Feed Pressure over Life Cycle of Facility	170.50	psi	1375.50	kPa			
46	Input Number of Chemical Cleanings per Year	2.00	#					
47	Is a Spent Cleaning Chemical Neutralization System Included?	No	Y/N					
48								
49	Process Cartridge Filters							
50	Are Cartridge Filters Used as Part of Membrane Pre-treatment?	No	Y/N					
51	Type of Cartridge Filter being Utilized	Horizontal						
52	Input Number of Filter Cartridge Replacements per Year	8.00	#					
53	Input Cartridge Filter Manufacturer	Parker	Type					
54	Input Model Number for Cartridge Filter (Fil-Trek)	GLH44-189-4-14	Model					
55	Input Cartridge Filter Vessel Material of Construction	SST316	Type					
56	Input Model Number for Cartridge Filter (Parker)	MP18H4-14-EPK1	Model					
57								
58	Input Average Loading Rate for Cartridge Filters, All Filters in Operation (flow per 10-inch cartridge)	4.00	gpm	0.28	l/s			
59	Input Maximum Loading Rate for Cartridge Filters, with One Filter Out of Service (flow per 10-inch cartridge)	8.00	gpm	0.32	l/s			
60	Calculate Number of Filter Elements per Housing	178.00	#					
61								
62	Calculate Length of Filter Elements	40.00	in	1016.00	mm			
63	Calculate Total Number of Filter Cartridges	0.00	#					
64	Calculate Total Number of Filter Cartridges/Year Replacements per Year	0.00	#					
65	Calculate Cartridge Filter Housing Width (inch)	3.51	in	1068.40	mm	CFW	Based on information from Fil-Trek	
66	Calculate Cartridge Filter Housing Length (inch)	6.23	in	1696.65	mm	CFL	Based on Parker Horizontal Cartridge Filters	
67	Input Number of Standby Cartridge Filter Housings	1.00	#					
68	Calculate Total Number of Horizontal Cartridge Filter Housing	0.00	#					
69	Input Number of Rows of Cartridge Filter Housings	2.00	#					
70	Calculate Number of Cartridge Filter Housings per Row	0.00	#					
71	Cartridge Filters Area Requirements							
72	Input Clear Distance between Cartridge Filters and Membrane Trains Pipe Trench	2.00	ft	669.90	mm	D1A		
73	Calculate Clear Distance between Cartridge Filters	0.00	ft	0.00	mm	D1B		
74	Calculate Cartridge Filter Housing Height	0.00	ft	0.00	mm	CFH		
75	Are Cartridge Filter Housing Inlet/Outlet on the Same Trench?	Yes	Y/N					
76								
77	Bypass Blend Pipeline							
78	Is Bypass Blend to be Included?	Yes	Y/N					
79	Input Bypass Blend Flow	3.00	mgd	11.36	ML/d			
80	Are Cartridge Filters Used?	No	Y/N					
81	Type of Cartridge Filter being Utilized	Horizontal						
82	Input Number of Filter Cartridge Replacements per Year	8.00	#					
83	Input Cartridge Filter Manufacturer	Parker	Type					
84	Input Model Number for Cartridge Filter (Fil-Trek)	GLH44-189-4-14	Model					
85	Input Cartridge Filter Vessel Material of Construction	SST316	Type					
86	Input Model Number for Cartridge Filter (Parker)	MP18H4-14-EPK1	Model					
87								
88	Input Average Loading Rate for Cartridge Filters, All Filters in Operation (flow per 10-inch cartridge)	8.00	gpm	0.18	l/s			
89								

B	C	D	E	F	G	H	I
78 Input Maximum Loading Rate for Cartridge Filters, with One Filter Out of Service (Flow per 10-inch cartridge)	6.68	gpm	0.28	l/s		Default is 5.0 gpm per 10-inch cartridge with standby filter out of service	
79 Calculate Number of Filter Elements per Housing	60.00	#				Default is Fil-Trek horizontal cartridge filters. 180 filter elements for Fil-Trek horizontal cartridge filters. Parker horizontal cartridge filters has 231 filter elements per housing	
80							
81 Calculate Length of Filter Elements	40.00	in	1018.00	mm			
82 Calculate Total Number of Filter Cartridges	0.00	#					
83 Calculate Total Number of Filter Cartridges Replacements per Year	0.00	#					
84 Calculate Cartridge Filtration Housing Width (each)	2.51	ft	763.00	mm	CFW	Based on information from Fil-Trek	
85 Calculate Cartridge Filtration Housing Length (each)	5.69	ft	1723.58	mm	CFL	Based on Parker Horizontal Cartridge Filters	
86 Input Number of Standby Cartridge Filter Housings	0.00	#				Typically 0	
87 Calculate Total Number of Horizontal Cartridge Filtration Housings	0.00	#					
88							
89 Static Mixer							
90 Is Static Mixer Used for Blending of Pre-treatment Chemicals?	No	Y/N					
91 Calculate Total Number of In-line Static Mixers	0.00	#				1 per Row of RO Skids	
92 Input Static Mixer Manufacturer	Komax	Type				Based on Komax and Kenics motionless mixers	
93 Calculate Maximum Water Flow per In-line Static Mixer	4000.00	gpd					
94 Calculate Static Mixer Length	0.00	in	0.00	mm	SML	Provided by Equipment Vendor	
95 Calculate Static Mixer Diameter	0.00	in	0.00	mm		Provided by Equipment Vendor	
96 Input Clear Distance between Cartridge Filters and Static Mixer and between Static Mixer and Membrane Trains	18.00	ft	2,438.48	mm	DS	Typically 2 to 3 pipe diameters	N/A
97							
98 Membrane Trains							
99 Calculate Total Number of Active Membrane Trains	5.00	#					
100 Calculate RO Membrane Area per Train	120000.00	sf	11148.36	m ²			
101 Calculate Initial Estimate of Number of Pressure Vessels per Train	5.26	#					
102 Calculate Initial Estimate of Number of Stage 1 Pressure Vessels	3.51	#					
103 Calculate Number of Stage 1 Pressure Vessels per Train	4.00	#					
104 Calculate Number of Stage 2 Pressure Vessels per Train	2.00	#					
105 Calculate Number of Stage 3 Pressure Vessels per Train	0.00	#					
106 Calculate Total Number of Pressure Vessels per Train	8.00	#					
107 Calculate Number of Stage 1 Membrane Elements per Train	32.00	#					
108 Calculate Number of Stage 2 Membrane Elements per Train	16.00	#					
109 Calculate Number of Stage 3 Membrane Elements per Train	0.00	#					
110 Calculate Total Number of Membrane Elements per Train	48.00	#					
111 Calculate Number of Membrane Elements in Active Trains	24.00	#					
112 Calculate Total Number of Membrane Elements in All Trains	268.00	#					
Input Number of Pressure Vessels Stacked in Vertical Position per Train	6.00	#					
113							
Input Number of Pressure Vessels Stacked in Horizontal Position per Subtrain	4.00	#					
114 Calculate Total Number of Subtrains Needed	0.25	#				PVHS	For 8" membrane elements: Typically 8 or less for access to membranes, but will allow up to 12
115 Calculate Number of Subtrains Needed for 1st Stage Vessels	0.17	#					For 16" membrane elements: Typically up to 7
116 Calculate Number of Subtrains Needed for 2nd Stage Vessels	0.08	#					For 18" membrane elements: Typically up to 6
117 Calculate Number of Subtrains Needed for 3rd Stage Vessels	0.00	#					Typically 4 for 8" membrane elements and 4 for 16" or 18" membrane elements
118 Calculate Number of Subtrains for 1st Pressure Vessels	0.00	#					OKAY
119 Calculate Number of Pressure Vessels per Full Subtrain	24.00	#					
120 Calculate Number of Potential Future Pressure Vessels to be Installed in Partially Full Subtrain	13.00	#					
121 Calculate % of Empty Connections Available for Adding Pressure Vessels in the Future	3.00	%					
122							
123 Calculate Feed Flow per Subtrain	6666.67	gpm	420.80	l/s		PVHS	
124 Calculate Pipe Diameter of Each Subtrain Feed Header	12.00	in	304.80	mm			
Horizontal Distance Between Pressure Vessel Contourlines in Train	2.00	ft	609.60	mm			
125							
Calculate Outside Diameter of Pressure Vessel	23.10	in	588.74	mm		PVH	
126 Calculate Horizontal Distance between Centerline of Subtrain Header and Centerline of First Pressure Vessel	1.54	ft	468.83	mm			
127 Input Clear Distance between Membrane Subtrains in a Row	3.00	ft	914.40	mm			
128 Calculate Membrane Train Width	47.67	ft	14528.00	mm			
129 Calculate Membrane Subtrain Width	9.00	ft	2743.20	mm			
130 Calculate Membrane Train Length	9.00	ft	2743.20	mm			
131 Input Vertical Distance from Floor Slab to Centerline of Lowest Pressure Vessel in Subtrain	2.28	ft	670.98	mm		MTL	
132 Calculate Vertical Distance Between Pressure Vessel Centerlines in Subtrain	2.33	ft	711.20	mm			
133							
Calculate Membrane Train Height	14.83	ft	4519.83	mm		MTH	
134 Input Clear Distance between Membrane Trains in a Row	8.00	#	2,438.48	mm		D8	Typically 8 to 10 feet
135 Input Clear Distance from Building Wall to Outside Membrane Train - Feed Pump Side (Width Dimension)	16.00	ft	3,848.00	mm		D4	Typically 10 to 12 feet
136 Input Clear Distance between Rows of Membrane Slides	8.00	ft	2,438.48	mm			Typically 8 to 10 feet
137 Input Clear Distance from Building Wall to Outside Membrane Train - Energy Recovery Device Side (Width Dimension)	16.00	ft	3,848.00	mm		D4A	Minimum 4 feet for Dow and Koch Membranes assuming membrane loading is done on the opposite side of trains
138 Input Clear Distance from Last RO Train to Building Wall (Length Dimension)	8.00	ft	2,438.48	mm		D11	Typically 8 to 12 feet (D8 + 2 ft)
139 Input Clear Distance from RO Feed Pump to Building Wall (Width Dimension)	4.00	ft	1,834.00	mm		D10	Typically 4 to 5 feet
140 Calculate Clear Distance from Membrane Trains to Building Wall	0.53	ft	2895.00	mm		D3 + HPPL + D9	
141 Calculate Clear Distance from Membrane Trains to Building Wall for Building String Purpose	10.00	ft	3048.00	mm		D4	Greater of D4 or D3 + HPPL + D10
142							
143							
144 Turbocompressor for Interstage Pressure Boost (ERD)	416.67	gpm	26.29	l/s			
145 Calculate Total Concentrate Flow to Energy Recovery Device (c)	LPT-400	Model					Based on information from Pump Engineering
146 Input Turbocompressor for Interstage Pressure Boost Model	529.20	gpm	33.38	l/s			
147 Target Concentrate Flow per Energy Recovery Device	600.00	gpm	37.85	l/s			Assumes a target flow of 88.2% of the maximum flow
148 Maximum Concentrate Flow per Energy Recovery Device	0.00	#					Based on information from Pump Engineering
149 Calculate Total Number of Energy Recovery Devices per Train	2.00	#	364.00	mm		D3A	Should be equal to 1
150 Input Clear Distance between Membrane Train and Energy Recovery Devices	2.00	#					Typically 8" to 1 foot
151 Energy Recovered by the Turbocompressor	416.67	gpm	26.29	l/s			
152 Concentrate Flow to Device	416.67	gpm	1,241.00	kPa			
153 Input RO Concentrate Pressure Entering the Turbocompressor	280.00	%					Based on RO projections
154 Input LPT Hydraulic Transfer Efficiency	70.00%	%					
155 Calculate Energy Recovered by the Device	47.68	hp	35.53	kW			
156 Calculate Efficiency of the Energy Recovery Device	85.24%	%					
157 Energy Recovery Area Requirements							
158 Calculate Energy Recovery Device Width, if Used	0.00	ft	0.00	mm		ERW	
159 Calculate Energy Recovery Device Length, if Used	0.00	ft	0.00	mm		ERL	
160 Calculate Energy Recovery Device Height, if Used	0.00	ft	0.00	mm		ERH	
161							
162 Interstage Pressure Booster Pump	6.00	#					
163 Calculate Number of Active Booster Pumps	791.07	gpm					
164 Calculate Booster Pump Flow Rate (psi/l)	58.00	psi					
165 Input Booster Pump TDH	78.00%	%					
166 Input Booster Pump Efficiency	98.00%	%					
167 Input Motor Efficiency of Booster Pump	98.00%	%					
168 Is an Adjustable Frequency Drive (AFD) Used?	Yes	Y/N					Typically 95%
169 Input AFD Efficiency	98.00%	%					
170 Input Safety Margin Allocated in Pump Design Brake Horsepower	1.00	%					
171 Calculate Were to Water Efficiency for Booster Pumps	0.08	%					
172 Calculate Booster Pump Horsepower (each)	30.79	hp	22.98	kW			

B	C	D	E	F	G	H	I
173 Calculate Motor Power Consumption for Booster Pump (each)	34.11	hp	25.44	kW			
174 Calculate Total Power of Booster Pumps (ALL ACTIVE Pumps)	204.08	hp	152.63	kW			
175 Interstage Pressure Booster Pump Area Requirements							
176 Input Pump Model Number	F2288_HP100 / CRH80	Model					
177 Calculate Individual Pump Sizing Flow	800.00	gpm					
178 Calculate Individual Pump Sizing Horsepower	50.00	hp					
179 Input Booster Pump Pad Width	2.00	ft	681.42	mm			
180 Input Booster Pump Pad Length	3.00	ft	762.00	mm			
181 Input Booster Pump and Motor Height	8.00	ft	2,389.83	mm			
182 Input Clear Distance between Membrane Train and Interstage Booster Pump	3.00	ft	914.48	mm			
183						D38	Typically 3 feet
184 High Pressure RO Feed Pumps Calculations							
185 Calculate Number of Active High Pressure Membrane Feed Pumps	5.00	#					
186 Calculate RO Feed Pump Flow Rate (each)	1000.07	gpm	105.15	l/s			
187 Calculate RO Feed Pump TDH	285.00	psi	1965.01	kPa			
188 Input RO Feed Pump Efficiency	88.00%	%					
189 Input Motor Efficiency of RO Feed Pump	88.00%	%					
190 Is an Adjustable Frequency Drive (AFD) Used?	Yes	Y/N					
191 Input AFD Efficiency	88.00%	%					
192 Input Safety Margin Allocated in Pump Design Brake Horsepower	1.00						
193 Calculate Wire to Water Efficiency for High Pressure Membrane Feed Pumps	0.74	%					
194 Calculate RO High Pressure Feed Pump Horsepower (each)	346.35	hp	258.28	kW			
195 Calculate Required RO High Pressure Feed Pump Horsepower including Capacity from Energy Recovery Drives	238.70	hp	222.74	kW			
196 Calculate Water Power Consumption for RO High Pressure Feed Pump (each)	224.59	hp	167.48	kW			
197 Calculate Total Power of RO High Pressure Feed Pumps (ALL ACTIVE Pumps)	1122.94	hp	837.38	kW			
198 Brackish Water RO High Pressure Feed Pump Area Requirements							
199 Calculate Pump Model Number	F1750_HP250 / Model 10JH-H						Based on information from Weir
200 Calculate Individual Pump Sizing Flow	1750.00	gpm	110.41	l/s			
201 Calculate Individual Pump Sizing Horsepower	250.00	hp	188.42	kW			
202 Calculate Pump Inlet Diameter	18.50	in	469.90	mm			
203 Calculate Pump Discharge Diameter	10.00	in	254.00	mm			
204 Calculate RO High Pressure Feed Pump Pad Length (each)	2.50	ft	762.00	mm			
205 Calculate RO High Pressure Feed Pump Pad Width (each)	2.17	ft	580.40	mm			
206 Calculate RO High Pressure Feed Pump and Motor Height (each)	7.84	ft	2390.90	mm			
207 Input Clear Distance between Membrane Train and High Pressure Feed Pumps	3.00	ft	914.48	mm			
208 Common High Pressure RO Feed Pump Included?	No	Y/N				D3	Typically 3 feet
209 Is a Common RO Feed Pump Included?							
210							
211 Permeate Flushing Area							
212 Is Permeate Flushing Capability to be Provided?	Yes	Y/N					
213 Is Flushing Tank on a Side Stream or Full Stream? (Side/Full)	Side	Type					
214 Input Flushing Flow Rate per Vessel	40.00	gpm	2.82	l/s			
215 Input Number of Trains to be Flushed with Permeate Upon Shutdown	2.00	#					Typically 40 gpm for 8" elements, 160 gpm for 18" elements and 200 gpm for 36" elements
216 Calculate Volumes per Vessel	517.58	gal	2.03	m3			Adjust for large diameter
217 Input Specific Throughput per Vessel (Vessel Volumes)	2.00	gal					
218 Calculate Flushing Volumes per Train	6450.05	gal	24.42	m3			
219 Calculate Flushing Tank Volume based on Number of Vessels to be Flushed	12901.91	gal	48.84	m3			
220 Input HRT for Permeate Flushing Tank	8.00	min					
221 Calculate Permeate Flushing Tank Volume	31250.00	gal	118.29	m3			
222 Input Number of Flushing Tanks of Equal Size	1.00	#					
223 Calculate Flushing Tank Volume (each)	12901.91	gal	48839.04	L			
224 Conversion of Total Flushing Tank Volume from Gallons to CF	1724.73	cf	48.84	m3			
225 Input Flushing Tank Preload	2.00	ft	629.68	mm			
226 Input Circular or Rectangular Type ("Circular" or "Rectangular")	Circular						FB
227 Input Height to Width Ratio or Height to Diameter Ratio							Typically 2 feet
228 Input Length to Width Ratio (for Rectangular Tanks)	1.20						
229 For Circular Tank, Calculate Flushing Tank Diameter	1.00	ft					
230 For Circular Tank, Calculate Flushing Tank Side Water Depth	12.00	ft	3657.00	mm			
231 For Circular Tank, Calculate Flushing Tank Total Height	15.25	ft	4848.20	mm			
232 For Circular Tank, Calculate Flushing Tank Total Side Water Depth	17.25	ft	5257.00	mm			
233 For Rectangular Tank, Calculate Flushing Tank Width	0.00	ft	0.00	mm			
234 For Rectangular Tank, Calculate Flushing Tank Side Water Depth	0.00	ft	0.00	mm			
235 For Rectangular Tank, Calculate Flushing Tank Total Height	0.00	ft	0.00	mm			
236 Input Clear Distance between Flushing Tanks & Pumping Systems	8.00	ft	3,848.00	mm			
237 Flushing Pumps						D8	Typically 10 feet
238 Flushing Pump Type	Horizontal Centrifugal						
239 Number of Active Flushing Pumps	1.00	#					
240 Input Number of Standby Flushing Pump	1.00	#					
241 Calculate Number of Standby Flushing Pumps	1.00	#					
242 Calculate Total Number of Flushing Pumps	2.00	#					
243 Calculate Required Flushing Flow	50.00	gpm	5.05	l/s			
244 Calculate Flushing Pump Flow (each)	80.00	gpm	5.05	l/s			
245 Input Flushing Pump Efficiency	78%	%					
246 Input Motor Efficiency of Flushing Pump	88%	%					
247 Is Adjustable Frequency Drive (AFD) Used?	Yes	Y/N					
248 Input AFD Efficiency	88%	%					
249 Input Safety Margin Allocated in Pump Design Brake Horsepower	1.18						
250 Input Flushing Pump TDH	0.70	%					
251 Calculate Flushing Pump Brake Horsepower (each)	148.69	ft	42,672.00	mm			
252 Calculate Flushing Pump Flow Rate (each)	10.00	hp	7.48	kW			
253 Calculate Motor Power Consumption for Flushing Pump (each)	4.05	hp	3.02	kW			
254 Calculate Total Power of Flushing Pump (ALL ACTIVE Pumps)	4.05	hp	3.02	kW			
255 Calculate Flushing Pump Pad Length (each)	0.40	ft	(1035.42)	mm			
256 Calculate Flushing Pump Pad Width (each)	(0.38)	ft	(118.44)	mm			
257 Calculate Flushing Pump Pad Height (each)	(0.71)	ft	(217.56)	mm			
258 Input Clear Distance between Flushing, Permeate Transfer, & Neutralization Pump Pads	3.00	ft	1,624.00	mm			
259						D8	Typically 3 to 6 feet
260 Permeate Transfer Pumps							
261 Permeate Transfer Pump Type	Horizontal Centrifugal						
262 Are Permeate Transfer Pumps Included?	No	Y/N					
263 Input Number of Active Permeate Transfer Pumps	0.00	#					
264 Input Number of Standby Permeate Transfer Pump	0.00	#					
265 Calculate Total Number of Permeate Transfer Pumps	0.00	#					
266 Calculate Membrane Permeate Transfer Pumps Flow Rate (each)	0.00	gpm	0.00	l/s			
267 Input Permeate Transfer Pump Efficiency	78%	%					
268 Input Motor Efficiency of Permeate Transfer Pump	88%	%					
269 Is Adjustable Frequency Drive (AFD) Used?	Yes	Y/N					
270 Input AFD Efficiency	88%	%					
271 Input Safety Margin Allocated in Pump Design Brake Horsepower	1.18						
272 Calculate Wire to Water Efficiency for Permeate Transfer Pumps	0.90	%					
273 Input Permeate Transfer Pump TDH	88.00	ft	28,868.00	mm			
274							Typically 85 ft

	B	C	D	E	F	G	H	I
274	Calculate Permeate Transfer Pump Erosion 14-inches/pump (each)	0.00	hp	0.00	kW			
275	Calculate Motor Power Consumption for Permeate Transfer Pump (each)	0.00	hp	0.00	kW			
276	Calculate Motor Power Consumption for Permeate Transfer Pump (ALL ACTIVE PUMPS)	0.00	hp	0.00	kW		Based on active pumps	
277	Calculate Permeate Transfer Pump Pad Length (each)	0.00	ft	0.00	mm	TPL		
278	Calculate Permeate Transfer Pump Pad Width (each)	0.00	ft	0.00	mm	TPW		
279	Calculate Permeate Transfer Pump Pad Height (each)	0.00	ft	0.00	mm	TPH		
280								
281	Clean-In-Place System							
282	Is Clean-In-Place Capability to be Provided?	Yes	Y/N					
283	Input Unit Flow Rate for Cleaning Pressure Vessels	40.00	gpm	2.82	L/s		Typically 40 gpm for 8" elements, 180 gpm for 16" elements and 200 gpm for 18" elements	Adjust for large diameter
284	Is Cleaning going to be Performed at the Train, Half Train, or Subtrain Level?	Subtrain	Type					
285	Is a Common Access Platform Included for Access to CIP Tank(s)?	Yes	Y/N				Typically Yes	
286	Is Space for a Scissor Lift to be Provided?	No	Y/N				Typically Yes for small plants	
287	Is a Monorail Hoist Required for Handling Dry CIP Chemicals Superseals?	Yes	Y/N				Typically No for small plants	
288	Input Clear Distance between All CIP Components	4.00	ft	1,028.00	mm	D7	Typically 4 to 8 feet	
289	Input Clear Distance between CIP Tanks, if more than One	8.00	ft	2,438.00	mm	D7A	Typically 8 to 8 feet	
290	Input Clear Distance between CIP Tank and Building Wall on the Side with Access to Superseals	8.00	ft	2,438.00	mm	D7B	Typically 8 feet, enough space to maneuver a forklift or scissor lift	OKAY
291	Input Common Access Platform Total Width	6.00	ft	1,628.00	mm	D7C	Typically 6 feet	OKAY
292	Calculate Number of Vessels to be Cleaned Simultaneously	24.00	ft					
293	Calculate Membrane Train Cleaning Solution Rate & Solution Recirculation Pump Capacity (gpm)	060.00	gpm	80.57	L/s		Calculated based on total number of pressure vessels and a flushing flow rate of 40 gpm per pressure vessel	
294	Calculate Cleaning Solution Recirculation Pump Capacity	060.00	gpm	80.57	L/s			
295	Calculate Total Volume of Vessels Cleaned Simultaneously	12901.91	gal	48339.04	L			
296	Calculate Pipe Diameter for Cleaning Recirculation Pipe	10.00	in	254.00	mm		Based on a target velocity of 7 fpm	
297	Estimate Volume of Cleaning Sledges based on Distance to Farthest RO Train	2355.38	gal	8916.08	L			
298	Estimate Volume of Cleaning Sledges based on Average Distance to RO Trains	1962.82	gal	7430.08	L			
299	Input Estimate Volume Factor Required for Cleaning Solution Wasting	1.28					Initial 20% of cleaning solution will be wasted rather than recycled	
300	Input Cleaning Solution Tank HRT	3.00	min				Typically 1-3 min	
301	Calculate Minimum Volume Inside CIP Tank Required for Pump Suction	2540.00	gal	10901.99	L		Based on HRT	
302	Calculate Design Cleaning Volume Required	21168.74	gal	80208.12	L		Based on an individual chemical clean per train or subtrain. May need to be repeated for each chemical per train or subtrain	
303	Calculate Average Cleaning Volume Required	20717.67	gal	78424.81	L		Based on an individual chemical clean per train or subtrain. May need to be repeated for each chemical per train or subtrain	
304	Cleaning Solution Recirculation Pump Sizing							
305	Input Number of Active Cleaning Solution Recirculation Pumps	1.00	ft				Typically 1	
306	Input Number of Standby Cleaning Solution Recirculation Pumps	1.00	ft				Typically 0	
307	Calculate Total Number of Cleaning Solution Recirculation Pumps	2.00	ft					
308	Input Cleaning Solution Recirculation Pump Efficiency	75%	%					
309	Input Motor Efficiency of Cleaning Solution Recirculation Pump	95%	%					
310	Is an Adjustable Frequency Drive (AFD) Used?	Yes	Y/N					
311	Input AFD Efficiency	98%	%				Typically 95%	
312	Input Safety Margin Allocated in Pump Design Brake Horsepower	1.18						
313	Calculate Water Efficiency for Cleaning Solution Recirculation Pumps	0.70	%					
314	Input Cleaning Solution Recirculation Pump TDH	148.00	ft	42,872.00	mm		Typically 140 feet	
315	Calculate Cleaning Solution Recirculation Pump Horsepower	00.00	hp	44.74	kW			
316	Calculate Motor Power Consumption for Cleaning Solution Recirculation Pump (each)	48.01	hp	38.25	kW			
317	Calculate Motor Power Consumption for Cleaning Solution Recirculation Pump (ALL ACTIVE PUMPS)	48.61	hp	38.25	kW			
318	Calculate Cleaning Solution Recirculation Pump Pad Length (each)	3.59	ft	1094.68	mm	CPL		
319	Calculate Cleaning Solution Recirculation Pump Pad Width (each)	2.71	ft	824.70	mm	CPW		
320	Calculate Cleaning Solution Recirculation Pump Pad Height (each)	2.08	ft	634.48	mm	CPH		
321								
322	Cleaning Solution Tank Sizing							
323	Calculate Total Cleaning Solution Tank Volume	21168.74	gal	80208.12	L			
324	Conversion of Total Cleaning Solution Tank Volume from Gallons to CF	2532.52	cf	80.21	m3			
325	Input Number of Cleaning Solution Tanks of Equal Size	2.00	ft					
326	Calculate Cleaning Solution Tank Volume (each)	10594.37	gals	0.00	L			
327	Conversion of Cleaning Solution Tank Volume from Gallons to CF	1410.76	cf	40.10	m3			
328	Input Cleaning Solution Tank Freeboard	2.00	ft	609.80	mm	FB	Typically 2 feet	
329	Input Circular or Rectangular Type ("Circular" or "Rectangular")	Circular	Type					
330	Input Depth to Width Ratio or Depth to Diameter Ratio	1.28						
331	Input Length to Width Ratio	1.08						
332	For Circular Tank, Calculate Cleaning Tank Diameter	11.00	ft	3383.80	mm	CTL & CTW		
333	For Circular Tank, Calculate Cleaning Tank Side Water Depth	14.90	ft	4542.38	mm	SWD		
334	For Circular Tank, Calculate Cleaning Tank Total Height	14.90	ft	5151.98	mm	CTH		
335	For Rectangular Tank, Calculate Cleaning Tank Length	0.00	ft	0.00	mm	CTL		
336	For Rectangular Tank, Calculate Cleaning Tank Width	0.00	ft	0.03	mm	CTW		
337	For Rectangular Tank, Calculate Cleaning Tank Side Water Depth	0.00	ft	0.00	mm	SWD		
338	For Rectangular Tank, Calculate Cleaning Tank Total Height	0.00	ft	0.00	mm	CTH		
339	CIP Tank Mixer Sizing							
340	Calculate Solution Tank Mixer Horsepower (each)	13.00	hp	9.69	kW		Based on velocity gradient of 500 inverse seconds at 25 deg C	
341	CIP Solution Heater Sizing							
342	Will a Heater be Used to Increase Temperature of CIP Cleaning Solution?	Yes	Y/N				Suggest adding heater when design water temperature is below 20 deg C	
343	Input Minimum Initial Cleaning Solution Temperature	32.00	degrees F	6.00	degrees C		Use lowest water temperature	
344	Input Maximum Target Cleaning Solution Temperature	104.00	degrees F	48.00	degrees C		Warm CIP solution, 90 to 100 degrees F, produces significantly better cleaning	
345	Input Total Number of Hours Required in Heat Cleaning Solution	6.00	hr				Typically 1 to 4 hours	
346	Calculate CIP Heater Size (watt)	353.44	kW				Includes a safety margin of 1.25	
347	Calculate Total Time per Year CIP Heater is Operating	90.00	hr/year					
348	Calculate Effective Horsepower of CIP Heater (each)	5.35	hp	3.99	kW		Average HP of CIP heater assuming constant operation	
349	Calculate Total Number of CIP Heaters	4.00	ft				Same as number of cleaning solution tanks	
350	Cleaning Solution Cartridge Filters							
351	Input Cartridge Filter Manufacturer	Parker	Type					
352	Type of Cartridge Filter being Utilized	Vertical					Fixed at Vertical	
353	Calculate Number of Cleaning Solution Cartridge Replacement/Year	24.00	ft			Unique to CIP		
354	Input Model Number for Filter Vessel (Fil-Trek)	L40-163-4-12F	Model				CIP cartridge filter elements are not changed out between 1st stage cleaning, 2nd stage cleaning and 3rd stage cleaning with the SAME chemical	
355	Input Model Number for Filter Vessel (Parker)	MP178-4-14PHC2	Model				Based on Fil-Trek vertical cartridge filters	
356	Input Average Loading Rate for Cartridge Filters, All Filters in Operation (flow per 10-inch cartridge)	4.00	gpm	0.28	L/s		Based on Parker vertical cartridge filters	
357	Input Maximum Loading Rate for Cartridge Filters, with One Filter Out of Service (flow per 10-inch cartridge)	8.00	gpm	0.32	L/s		Ranges from 3-5 gpm per 10-inch cartridge. Default is 4.0 gpm per 10-inch cartridge with all filters in operation	
358	Calculate Number of Filter Elements per Housing	178.00	ft	1016.00	mm		Default is 5.0 gpm per 10-inch cartridge with standby filters out of service	
359	Calculate Length of Filter Elements	40.00	in				Based on Parker vertical cartridge filters	
360	Input Number of Standby Cleaning Solution Cartridge Filter Housing	0.00	ft			Unique to CIP		
361	Calculate Number of Vertical Cleaning Solution Cartridge Filter Housing	1.00	ft			Unique to CIP		
362	Calculate Cartridge Filtration Housing Diameter (each)	3.51	ft	1068.40	mm	CCFL/CCFW	Based on manufacturer's information	
363	Calculate Cartridge Filtration Housing Height (each)	9.83	ft	2997.20	mm	CCFH	Based on manufacturer's information	

B	C	D	E	F	G	H	I
365 Calculate Total Number of Filter Cartridges	176.00	#					
366 Calculate Total Number of Filter Cartridges Replacements per Year	4224.00	#					
367 CIP Solution Chiller Sizing							
368 Will a Chiller be Used to Decrease Temperature of CIP Cleaning Solution?	No	Y/N					
369 Input Minimum Initial Cleaning Solution Temperature	104.00	degrees F	48.00	degrees C			
370 Input Minimum Target Cleaning Solution Temperature	66.00	degrees F	36.00	degrees C			
371 Input Total Number of Hours Required to Cool Cleaning Solution	6.98	hr					
372 Calculate CIP Chiller Size	292113.10	BTU/hr	87.00	kw			
373 Calculate CIP Chiller Size	57.63	kw					
374 Calculate Total Time per Year CIP Chiller is Operating	0.00	hr/year					
375 Calculate Effective Horsepower of CIP Chiller	0.00	hp	0.00	kW			
376 Chiller Area Requirements							
377 Calculate Chiller Length	0.00	ft	0.00	mm	CHL		
378 Calculate Chiller Width	0.00	ft	0.00	mm	CHW		
379 Calculate Chiller Height	0.00	ft	0.00	mm	CHH		
380 Dry Chemicals Solution Preparation Tank Sizing							
381 Is a Dilution Tank included to prepare Dry CIP Chemicals?	No	Y/N					
382 Calculate Total Dry Chemicals Solution Preparation Tank Volume	1056.44	gal	4010.41	L			
383 Number of Dry Chemicals Solution Preparation Tanks of Equal Size	0.00	#					
384 Calculate Dry Chemicals Solution Preparation Tank Volume (each)	0.00	gal	0.00	L			
385 Conversion Total Dry Chemicals Solution Preparation Tank Volume from Gallons to CF	0.00	cf	0.00	m3			
386 Input Dry Chemicals Solution Preparation Tank Freeboard	2.00	R	998.00	mm	FB	Typically 2 feet	
387 Input Circular or Rectangular Type ("Circular" or "Rectangular")	Circular	Type					
388 Input Depth to Width Ratio or Depth to Diameter Ratio	1.25						
389 Input Length to Width Ratio	1.00						
390 For Circular Tank, Calculate Dry Chemicals Solution Preparation Tank Diameter	0.00	ft	0.00	mm	DTW & DTL		
391 For Circular Tank, Calculate Dry Chemicals Solution Preparation Tank Side Water Depth	0.00	ft	0.00	mm	SWD		
392 For Circular Tank, Calculate Dry Chemicals Solution Preparation Tank Total Height	0.00	ft	0.00	mm	DTH		
393 For Rectangular Tank, Calculate Dry Chemicals Solution Preparation Tank Length	0.00	ft	0.00	mm	DTL		
394 For Rectangular Tank, Calculate Dry Chemicals Solution Preparation Tank Width	0.00	ft	0.00	mm	DTW		
395 For Rectangular Tank, Calculate Dry Chemicals Solution Preparation Tank Side Water Depth	0.00	ft	0.00	mm	SWD		
396 For Rectangular Tank, Calculate Dry Chemicals Solution Preparation Tank Total Height	0.00	ft	0.00	mm	DTH		
397 Dry Chemicals Mixer Sizing							
398 Calculate Gated Tank Motor Horsepower (each)	0.00	hp	0.00	kW			
399 Dry Chemicals & Heater Sizing							
400 Will a Heater be Used to Increase Temperature of CIP Cleaning Solution?	No	Y/N					
401 Input Minimum Initial Cleaning Solution Temperature	50.00	degrees F	10.00	degrees C			
402 Input Maximum Target Cleaning Solution Temperature	104.00	degrees F	49.00	degrees C			
403 Input Total Number of Hours Required to Heat Cleaning Solution	8.69	hr					
404 Calculate CIP Heater GtA	0.00	kw					
405 Calculate Total Time per Year CIP Heater is Operating	0.00	hr/year					
406 Calculate Effective Horsepower of CIP Heater	0.00	hp	0.00	kW			
407 Dry Chemicals Transfer Pumps Sizing (from solution preparation tank to CIP tank)							
408 Number of Active Dry Chemicals Transfer Pumps	0.00	#					
409 Input Dry Chemicals Transfer Pumps Efficiency	78.00%	%					
410 Input Motor Efficiency of Dry Chemicals Transfer Pump	98.00%	%					
411 Is Adjustable Frequency Drive (AFD) Used?	No	Y/N					
412 Input AFD Efficiency	98.00%	%					
413 Input Safety Margin Allocated in Pump Design Brakes Horsepower	1.10						
414 Calculate Water to Water Efficiency for High Pressure Membrane Feed Pump	0.63	%					
415 Input Transfer Time from Dry Chemicals Solution Preparation Tank to CIP Tank	15.00	min					
416 Calculate Dry Chemicals Transfer Pumps Flow Rate	0.00	gpm	0.00	l/s			
417 Input Dry Chemicals Transfer Pumps TDM	20.00	ft	6,000.00	mm			
418 Calculate Dry Chemicals Transfer Pump Horsepower	0.00	hp	0.00	kW			
419 Calculate Motor Power Consumption for Dry Chemicals Transfer Pump (each)	0.00	hp	0.00	kW			
420 Calculate Total Power for Dry Chemicals Transfer Pumps (ALL ACTIVE PUMPS)	0.00	hp	0.00	kW			
421 Calculate Dry Chemicals Transfer Pump Pad Length (each)	0.00	ft	0.00	mm	DPL		
422 Calculate Dry Chemicals Transfer Pump Pad Width (each)	0.00	ft	0.00	mm	DPW		
423 Calculate Dry Chemicals Transfer Pump Pad Height (each)	0.00	ft	0.00	mm	DPH		
424 Cleaning Chemicals Sizing and Consumption							
425 Will Citric Acid be Used for Membrane Cleaning?	Yes	Y/N					
426 Input Concentration of Citric Acid for Membrane Cleaning	2.00%	%					
427 Input Number of Cleaning Segments Same Citric Acid Solution Used	1.00	#					
428 Calculate Annual Weight of Citric Acid Used for Membrane Cleaning (100% lb)	51835.61	lb	23512.24	kg			
429 Calculate Weight of Citric Acid Used for Each Membrane Train Cleaning (100% lb)	4319.63	lb	1959.35	kg			
430 Calculate Number of 2000-lb Dry Citric Acid Crystal Pellettes to Support Two Membrane Train Cleanings	5.00	#					
431 Equivalent Weight of Citric Acid	84.04	g/eq					
432 Will Sodium Hydroxide be Used for Membrane Cleaning?	Yes	Y/N					
433 Input Concentration of Sodium Hydroxide for Membrane Cleaning	8.10%	%					
434 Input Number of Cleaning Segments Same Sodium Hydroxide Solution Used	1.00	#					
435 Calculate Annual Weight of Sodium Hydroxide Used for Membrane Cleaning (100% lb)	2501.78	lb	1175.61	kg			
436 Calculate Weight of Sodium Hydroxide Used for Each Membrane Train Cleaning (100% lb)	219.98	lb	97.97	kg			
437 Calculate Number of 55-gallon Drums of 50% Sodium Hydroxide to Support Two Membrane Train Cleanings	2.00	#					
438 Equivalent Weight of Sodium Hydroxide	40.00	g/eq					
439 Will Hydrochloric Acid be Used for Membrane Cleaning?	No	Y/N					
440 Input Concentration of Hydrochloric Acid for Membrane Cleaning	0.20%	%					
441 Input Number of Cleaning Segments Same Hydrochloric Acid Solution Used	1.00	#					
442 Calculate Annual Weight of Hydrochloric Acid Used for Membrane Cleaning (100% lb)	0.00	lb	0.00	kg			
443 Calculate Weight of Hydrochloric Acid Used for Each Membrane Train Cleaning (100% lb)	0.00	lb	0.00	kg			
444 Calculate Number of 55-gallon Drums of 37% Hydrochloric Acid to Support Two Membrane Train Cleanings	0.00	#					
445 Equivalent Weight of Hydrochloric Acid	38.50	g/eq					
446 Will Sodium Phosphate be Used for Membrane Cleaning?	No	Y/N					
447 Input Concentration of Sodium Phosphate for Membrane Cleaning	1.00%	%					
448 Input Number of Cleaning Segments Same Sodium Phosphate Solution Used	1.00	#					
449 Calculate Annual Weight of Sodium Phosphate Used for Membrane Cleaning (100% lb)	0.00	lb	0.00	kg			
450 Calculate Weight of Sodium Phosphate Used for Each Membrane Train Cleaning (100% lb)	0.00	lb	0.00	kg			
451 Calculate Number of 2000-lb Dry Sodium Tripolyphosphate Pellettes to Support Two Membrane Train Cleanings	0.00	#					
452 Will Sodium Tripolyphosphate be Used for Membrane Cleaning?	Yes	Y/N					
453 Input Concentration of Sodium Tripolyphosphate for Membrane Cleaning	1.00%	%					
454 Input Number of Cleaning Segments Same Sodium Tripolyphosphate Solution Used	1.00	#					
455 Calculate Annual Weight of Sodium Tripolyphosphate Used for Membrane Cleaning (100% lb)	2591.80	lb	11756.12	kg			
456 Calculate Weight of Sodium Tripolyphosphate Used for Each Membrane Train Cleaning	2150.82	lb	979.68	kg			
457 Membrane Train Cleanings	3.00	#					
458 Will Sodium EDTA be Used for Membrane Cleaning?	Yes	Y/N					
459 Input Concentration of Sodium EDTA for Membrane Cleaning	1.00%	%					

	B	C	D	E	F	G	H	I
460	Input Number of Cleaning Segments. Same Sodium EDTA Solution Used	1.00	B				If unknown, use 1	
461	Calculate Annual Weight of Sodium EDTA Used for Membrane Cleaning (100%)	25917.80	Ib	11758.12	kg			
462	Calculate Weight of Sodium EDTA Used for Each Membrane Train Cleaning (100%)	2159.82	Ib	979.68	kg			
463	Calculate Number of 2000-lb Dry Sodium EDTA Pellets to Support Two Membrane Train Cleanings	3.00	B					
464	Other Liquid CIP Chemical 1							
465	Input Other Chemical's Name	Acid X						
466	Will this Chemical be Used for Membrane Cleaning?	No	Y/N					
467	Input Equivalent Weight of Chemical	40.00	g/eq					
468	Which chemical does this replace of the above choices?	Hydrochloric Acid						
469	Input Concentration of Chemical	1.00%	%					
470	Input Number of Consecutive Trains Cleaned with Same Chemical Solution	1.00	B				If unknown, use 1	
471	Calculate Annual Weight of Chemical Used for Membrane Cleaning (100%)	0.00	Ib	0.00	kg			
472	Calculate Weight of Chemical Used for Each Membrane Train Cleaning (100%)	0.00	Ib	0.00	kg			
473	Calculate Number of 55-gallon Drums of X% Chemical to Support Two Membrane Train Cleanings	0.00	B					
474	Other Liquid CIP Chemical 2							
475	Input Other Chemical's Name	Acid Y						
476	Will this Chemical be Used for Membrane Cleaning?	No	Y/N					
477	Input Equivalent Weight of Chemical	40.00	g/eq					
478	Which chemical does this replace of the above choices?	Hydrochloric Acid						
479	Input Concentration of Chemical	1.00%	%					
480	Input Number of Consecutive Trains Cleaned with Same Chemical Solution	1.00	B				If unknown, use 1	
481	Calculate Annual Weight of Chemical Used for Membrane Cleaning (100%)	0.00	Ib	0.00	kg			
482	Calculate Weight of Chemical Used for Each Membrane Train Cleaning (100% B)	0.00	Ib	0.00	kg			
483	Calculate Number of 55-gallon Drums of Y% Chemical to Support Two Membrane Train Cleanings	0.00	B					
484	Other Dry CIP Chemical 1							
485	Input Other Chemical's Name	Sodium dodecylsulfophosphate						
486	Will this Chemical be Used for Membrane Cleaning?	Yes	Y/N					
487	Input Equivalent Weight of Chemical	48.00	g/eq					
488	Which chemical does this replace of the above choices?	Trisodium Phosphate						
489	Input Concentration of Chemical	1.00%	%					
490	Input Number of Consecutive Trains Cleaned with Same Chemical Solution	1.00	B					
491	Calculate Annual Weight of Chemical Used for Membrane Cleaning (100%)	25917.80	Ib	11758.12	kg			
492	Calculate Weight of Chemical Used for Each Membrane Train Cleaning (100% B)	2159.82	Ib	979.68	kg			
493	Calculate Number of 2000-lb Dry Chemical Z Pellets to Support Two Membrane Train Cleanings	3.00	B					
494	Pretreatment Chemical Storage							
495	Chemical	Sulfuric Acid	Hydrochloric Acid	Scale Inhibitor	Other Pretreatment Chemical 1	Other Pretreatment Chemical 2		
496	Is this Chemical Used for CIP?	No	No	No	No	No		
497	Is this Chemical Used for Pretreatment?	Yes	No	Yes	No	No		
498	Equivalent Weight of Chemical	49.00	35.50	0.00	0.00	0.00		
499	Input Percent Active Chemical	93%	37%	100%	100%	25%	HCl concentration can either be 33% or 37%	
500	Input Bulk Chemical Specific Gravity	1.03	1.19	1.19	1.19	1.10		
501	Active Chemical Concentration (g/gallon)	14.19	3.67	9.17	9.17	2.29		
502	Choose Chemical Delivery Method	Tank Truck	Tank Truck	Tank Truck	Tank Truck	Tank Truck		
503	Bulk Delivery Volume (Tank Truck, Totes, Drums, gallons)	2048.46	4534.19	4205.17	4500.17	4795.17		
504	Pretreatment Flow (mgd)	12.00	12.00	12.00	12.00	12.00		
505	Input Number of Simultaneous Application Points	1.00	1.00	1.00	1.00	1.00		
506	Input Chemical Doses:							
507	Input Minimum Dose (mg/L)	10.00	10.00	2.00	2.00	0.00		
508	Input Average Dose (mg/L)	20.00	15.00	2.50	2.50	0.00		
509	Input Maximum Dose (mg/L)	30.00	20.00	3.50	3.50	0.00		
510	Minimum Chemical Usage (b/day)	1000.00	0.00	200.16	0.00	0.00		
511	Average Chemical Usage (b/day)	2001.00	0.00	250.20	0.00	0.00		
512	Maximum Chemical Usage (b/day)	3002.40	0.00	350.28	0.00	0.00		
513	Chemical Metering Rates per Simultaneous Operating Pump:							
514	Minimum Rate (g/hr)	2.04	0.00	0.91	0.00	0.00		
515	Average Rate (g/hr)	5.48	0.00	1.14	0.00	0.00		
516	Maximum Rate (g/hr)	8.81	0.00	1.59	0.00	0.00		
517	Calculate Chemical Metering Pump Flow Turndown (should be > 20, if > 20, proceed with caution)	3.00	0.00	1.75	0.00	0.00		
518	Input Number of Days for Storage for Pretreatment (days)	30.00	30.00	30.00	30.00	30.00		
519	Calculate Delivery Volume for Pretreatment @ Avg Flow/Cross (gallons)	4120.97	0.00	818.18	0.00	0.00		
520	Calculate Bulk Delivery Volume = 1.5 (for Truck Delivery Only in gallons)	4427.09	6881.28	7351.75	7351.75	7351.75		
521	Maximum et Above Two Volumes (gallons)	4427.09	6881.28	7351.75	7351.75	7351.75		
522	Maximum Volume in (cf)	5912.23	902.20	683.59	683.59	683.59		
523	BULK TANKS:							
524	Input Number of Tanks (each)	1.00	1.00	1.00	1.00	1.00		
525	Input Tank Diameter (ft)	14.00	10.00	10.00	10.00	10.00		
526	Calculate Height of Tanks (ft)	3.84	11.58	12.52	12.52	12.52		
527	Use this Tank Height (Liquid Height * 1.2) (ft)	5.00	14.00	16.00	16.00	16.00		OKEY
528	Input Number of Rows of Tanks (each)	1.00	1.00	1.00	1.00	1.00		
529	Calculate Number of Tanks per Row	1.00	0.00	1.00	0.00	0.00		
530	Input Tank Material (FRP, PE (Polyethylene), PLS (Phenolic Lined Steel))	PLB	PLS	FRP	FRP	FRP		
531	Input Clear Distance Around Bulk Tanks, Totes, or Drums (CDT)	5.00	4.00	4.00	4.00	4.00		
532	TOTES & DRUMS:							
533	Calculate Number of Totes or Drums (each)	0.00	0.00	0.00	0.00	0.00		
534	Input Number of Totes or Drums Pallets Stacked Vertically	2.00	2.00	2.00	2.00	2.00		
535	Input Number of Totes or Drums Pallets on Floor Horizontally	2.00	2.00	2.00	2.00	2.00		
536	Calculate Number of Rows of Totes or Drums Pallets	0.00	0.03	0.00	0.00	0.00		
537	Length of Each Tote (ft, Fixed)	0.00	0.00	0.00	0.00	0.00		
538	Width of Each Tote (ft, Fixed)	0.00	0.00	0.00	0.00	0.00		
539	Length and Width of Each Drum Pallet (ft, Fixed)	0.00	0.00	0.00	0.00	0.00		
540	METERING PUMPS:							
541	Calculate Number of Active Pretreatment Metering Pumps (each)	1.00	0.00	1.00	0.00	0.00		
542	Calculate Number of Standby Pretreatment Metering Pumps (each)	1.00	0.00	1.00	0.00	0.00		
543	Calculate Total Number of Pretreatment Metering Pumps (x1)	2.00	0.00	2.00	0.00	0.00		
544	Input Clear Distance Around Metering Pumps	4.00	4.00	3.00	4.00	4.00		
545	Length Metering Pumps	3.00	3.00	3.00	3.00	3.00	Fixed	
546	Width of Metering Pumps	1.50	1.50	1.50	1.50	1.50		
547	Width of Star Access	4.00	3.00	4.00	0.00	0.00	Fixed	
548	Input Common Chemical Access Corridor Width	0.00	0.00	0.00	0.00	0.00		0.00
549	Is Chemical Facility Covered?	Yes	Yes	Yes	Yes	Yes		
550	CONTAINMENT AREA:							
551	Calculate Containment Area Length (m)	24.00	0.00	18.00	0.00	0.00		42.00
552	Calculate Containment Area Width (ft)	39.00	0.00	31.00	0.00	0.00		
553	Calculate Fire Sprinkler Water Volume (gal) (0.2 gpm/ft for 20 min)	3744.00	0.00	2232.00	0.00	0.00		
554	Calculate 120% of One Storage Tank Volume (gal)	0509.22	9870.31	11280.36	11280.36	11280.36		
555	Calculate 30% of All Tank Volume (gal)	1727.00	2467.58	2920.00	2820.00	2330.00		
556	Maximum et Above Two Volumes (gal)	0509.22	9870.31	11280.36	11280.36	11280.36		
557	Calculate Maximum Volume = Fire Flow Volume (gal)	10033.22	9870.31	13512.36	11280.36	11233.33		
558	Calculate Maximum Volume = Fire Flow Volume (cf)	1424.13	1319.47	1598.34	1507.06	1507.06		
559	Calculate Containment Wall Height (including 6' Freeboard) (ft)	2.02	0.00	3.74	0.00	0.00		
560	Cleaning Chemical Storage							
561	Dry CIP Chemicals	Citric Acid	Trisodium Phosphate	Sodium Tripolyphosphate	Sodium dodecylsulfophosphate			
562	Is this Chemical Used for CIP?	Yes	No	Yes	Yes			
563	Is this Chemical Used for Pretreatment?	No	No	No	No			
564	Equivalent Weight of Chemical	61.04	N/A	N/A	40.00			
565	Input Percent Active Chemical	100%	98%	85%	80%			
566	Input Chemical Bulk Density (lb/ft³)	48.00	50.00	60.00	55.00			

B	C	D	E	F	G	H	I
567 Choose Chemical Delivery Method	Super Sack	Super Sack	Super Sack	Super Sack			
568 Bulk Delivery Volume (Truck, Super Sacks, Bags) (cf)	4187	43.00	33.33	33.33			
569 Calculate Bulk Storage Mass per CIP Event (tons)	12.06	0.00	7.62	8.10			
570 Calculate Bulk Storage Volume per CIP Event (cf)	539.95	0.00	254.10	294.82			
571 Calculate Bulk Delivery Volume * 1.5 for Truck Delivery Only (cf)	0.00	0.00	0.00	0.00			
572 Maximum of Above Two Volumes (cf)	539.95	0.00	254.10	294.82			
573 Input Number of Bulk Storage Sacks (each)	1.00	1.00	1.00	1.00			
574 Input Site Diameter (ft)	11.00	10.00	10.00	10.00			
575 Calculate Height of Cicks (ft)	0.00	0.00	0.00	0.00			
576 Calculate Number of Super Sacks or Bags (each)	12.06	0.00	7.62	8.10			
577 Input Clear Distance Around Sacks, Super Sacks or Bag Pallets (ft)	4.00	4.00	4.00	4.00			
578 Input Number of Super Sacks or Bag Pallets Stacked Vertically	2.00	2.00	2.00	2.00			
579 Input Number of Super Sacks or Bag Pallets on Floor Horizontally	6.00	4.00	4.00	4.00			
580 Calculate Number of Rows of Super Sacks or Bag Pallets	2.00	0.00	1.00	2.00			
581 Is Chemical Facility Covered?	Yes	Yes	Yes	Yes			
582 Liquid CIP Chemicals	Sodium Hydroxide	Hydrochloric Acid	Sodium EDTA	Acid X	Acid Y		
583 Is this Chemical Used for CIP?	Yes	Yes	Yes	No	No		
584 Is this Chemical Used for Pretreatment?	No	76	No	No	No		
585 Equivalent Weight of Chemical	40.00	35.50	N/A	40.00	40.00		
586 Input Percent Active Chemical	50%	37%	88%	40%	40%		
587 Input Bulk Chemical Specific Gravity	1.54	1.19	0.88	1.10	1.10		
588 Active Chemical Concentration, (gallon)	6.42	3.97	4.77	3.87	3.87		
589 Calculate Chemical Bulk Density (lb/cf)	48.04	27.47	35.89	27.48	27.48		
590 Choose Chemical Delivery Method	Total	Tank Truck	Tank Truck	Tank Truck	Tank Truck		
591 Bulk Delivery Volume (Tank Truck, Totals, Drums), gallons	300.00	4534.19	8201.05	4903.17	4905.17		
592 Calculate Bulk Storage Mass per CIP Event (tons)	0.65	0.00	8.48	0.00	0.00		
593 Calculate Bulk Storage Volume per CIP Event (cf)	26.98	0.00	383.14	0.00	0.00		
594 Calculate Bulk Delivery Volume * 1.5 for Truck Delivery Only (cf)	0.00	939.23	1684.53	983.59	983.59		
595 Maximum of Above Two Volumes (cf)	26.98	939.23	1684.53	983.59	983.59		
596 BULK TANKS:							
597 Input Number of Tanks (each)	1.00	1.00	1.00	1.00	1.00		
598 Input Tank Diameter (ft)	9.00	10.00	12.00	12.00	12.00		
599 Calculate Height of Tanks (ft)	0.00	11.55	12.54	8.70	8.70		
600 Use this Tank Height (Liquid Height * 1.21 (ft))	0.00	14.00	16.00	11.00	11.00		OKAY
601 Input Number of Rows of Tanks (each)	1.00	1.00	1.00	1.00	1.00		
602 Calculate Number of Tanks per Row	0.00	0.00	1.00	0.00	0.00		
603 Input Tank Material (FRP, PE (Polyethylene), PLS (Phenolic Lined Steel))	FRP	PLS	FRP	FRP	FRP		
604 Input Clear Distance Around Bulk Tanks, Totals, or Drums (CDT)	3.00	4.00	5.00	4.00	4.00		
605 TOTES & DRUMS:							
606 Calculate Number of Totes or Drums (each)	1.00	0.00	0.00	0.00	0.00		
607 Input Number of Totes or Drum Pallets Stacked Vertically	1.00	2.00	2.00	2.00	2.00		
608 Input Number of Totes or Drum Pallets on Floor Horizontally	4.00	2.00	2.00	2.00	2.00		
609 Calculate Number of Rows of Totes or Drum Pallets	1.00	0.00	0.00	0.00	0.00		
610 Length of Each Tote (ft, Fixed)	4.00	0.00	0.00	0.00	0.00		
611 Width of Each Tote (ft, Fixed)	4.00	0.00	0.00	0.00	0.00		
612 Length / Width of Each Drum Pallet (ft, Fixed)	4.00	0.00	0.00	0.00	0.00		
613 TRANSFER PUMPS:							
614 Calculate Number of Active Chemical Transfer Pumps (each)	1.00	0.00	1.00	0.00	0.00		
615 Input Number of Standby Chemical Transfer Pumps	0.00	0.00	0.00	0.00	0.00		
616 Calculate Total Number of Chemical Transfer Pumps (total)	1.00	0.00	1.00	0.00	0.00		
617 Input Time to Transfer 1/2 of the Bulk Storage Volume to the Solution Preparation Tank (inch, hours)	1.00	1.00	1.00	1.00	1.00		
618 Calculate Total Chemical Transfer Pump Capacity (Capacity (gpm))	100.90	0.00	4225.79	0.00	0.00		
619 Calculate Chemical Transfer Pump Capacity (each, gpm)	100.90	0.00	4225.79	0.00	0.00		
620 Input Clear Distance Around Transfer Pumps	3.00	4.00	4.00	4.00	4.00		
621 Length of Chemical Transfer Pumps (ft)	3.00	0.00	3.00	0.00	0.00		
622 Width of Chemical Transfer Pumps (ft)	1.50	0.00	1.50	0.00	0.00		
623 Width of Sump Access	4.00	0.00	4.00	0.00	0.00		
624 Input Common Chemical Access Corridor Width	0.00	0.00	0.00	0.00	0.00	0.00	
625 Is Chemical Facility Covered?	Yes	Yes	No	Yes	Yes		
626 CONTAINMENT AREA:							
627 Calculate Containment Area Length (ft)	22.00	0.00	23.00	0.00	0.00	45.00	
628 Calculate Containment Area Width (ft)	18.00	0.00	30.00	0.00	0.00		
629 Calculate Fire Sprinkler Water Volume (gall) (0.2 gpm*ft for 20 min)	1400.00	0.00	2750.00	0.00	0.00		
630 Calculate 120% of One Storage Tank Volume (gall)	580.00	9870.31	19063.80	11167.55	11167.55		
631 Calculate 30% of All Tank Volume (gall)	60.00	2467.58	4745.95	2791.89	2791.89		
632 Maximum of Above 2 Volumes (gall)	580.00	9870.31	19063.80	11167.55	11167.55		
633 Calculate Maximum Volume = Fire Flow Volume (gall)	1768.00	6470.31	21283.80	11167.55	11167.55		
634 Calculate Maximum Volume = Fire Flow Volume (cf)	236.35	1319.47	2917.42	1492.88	1492.88		
635 Calculate Containment Wall Height (including 6" Freeboard) (ft)	1.17	0.00	4.73	0.00	0.00		
636 Neutralization Chemicals							
637 Calculate Annual Excess of Acid Equivalents with respect to Base Equivalents	337.759	eq					
638 Input Neutralizing Acid (if needed)	48.00	g/eq				Typically Sulfuric Acid	
639 Input Neutralizing Acid's Equivalent Weight	48.00	g/eq				Use 48 if Sulfuric Acid is used for neutralization	
640 Calculate Annual Weight of Neutralizing Acid (100% lb)	0.00	lb	0.00	kg			
641 Calculate Weight of Neutralizing Acid for Each Membrane Train Cleaning (100% lb)	0.00	lb	0.00	kg			
642 Calculate Number of 55-gallon Drums of 93% Sulfuric Acid to Support Two Membrane Train Cleaning Neutralizations	0.00						
643 Input Neutralizing Base (if needed)	48.00	g/eq				Typically Caustic Soda	
644 Input Neutralizing Base Equivalent Weight	48.00	g/eq				Use 48 if Caustic Soda is used for neutralization	
645 Calculate Annual Weight of Neutralizing Base (100% lb)	2785.24	lb	13510.36	kg			
646 Calculate Weight of Sodium Hydroxide Used for Each Membrane Train Cleaning (100% lb)	2482.10	lb	1125.88	kg			
647 Calculate Number of 55-gallon Drums of 50% Sodium Hydroxide to Support Two Membrane Train Cleaning Neutralizations	18.00						
648 Neutralization Chemicals Storage Area Requirements							
649 Calculate Neutralization Chemicals Storage Area Length	5.68	ft	1724.21	mm	NCSL		
650 Calculate Neutralization Chemicals Storage Area Width	5.68	ft	1724.21	mm	NCSW		
651 Calculate Neutralization Chemicals Storage Area Height	8.00	ft	2438.40	mm	NCSH		
652 Spent Chemicals Neutralization Tank Sizing							
653 Input Number of RO Trains Used for Sizing of Spent Chemicals Neutralization Tank	1.00	#				Equal to the number of trains selected for CIP	
654 Input Number of Different Chemical Cycles being Used (e.g. acid cycle, caustic cycle, dechlorination cycle)	2.00	#				Typically use two one acid cycle plus one combined caustic & dechlorination cycle	
655 Calculate Volume of Spent Cleaning Chemicals Neutralization Tank	65873.77	gal	249359.34	L		Includes clean water rinsing (flushing) volume per each chemical cycle	
656 Input Number of Spent Cleaning Neutralization Tanks of Equal Size	2.00	#					ERROR
657 Calculate Spent Chemicals Neutralization Tank Volume (m3)	3294.68	gal	124878.87	L			
658 Input Portion of Total Spent Cleaning Chemicals Neutralization Tank Volume (m3)	4401.02	cf	124.68	m3			
659 Input Spent Cleaning Chemicals Neutralization Tank Freeboard	2.00	ft	888.88	mm	DB		
660 Input Circular or Rectangular Type ("Circular" or "Rectangular")	Circular	Type			FB	Typically 2 feet	
661 Input Depth to Width Ratio or Depth to Diameter Ratio	1.29						
662 Input Length to Width Ratio	1.00						
663 Input Depth of Cleaning Tank Baffles	0.00	ft	0.00	mm	NTW & NTL		
664 For Circular Tank, Calculate Spent Cleaning Chemicals Neutralization Tank Diameter	17.00	ft	5181.00	mm			
665 For Circular Tank, Calculate Spent Cleaning Chemicals Neutralization Tank Side Water Depth	19.40	ft	5912.59	mm	SWD		
666 For Circular Tank, Calculate Spent Cleaning Chemicals Neutralization Tank Total Height	21.40	ft	6522.19	mm	NTH		
667 For Rectangular Tank, Calculate Spent Cleaning Chemicals Neutralization Tank Length	0.00	ft	0.00	mm	NTL		
668 For Rectangular Tank, Calculate Spent Cleaning Chemicals Neutralization Tank Width	0.00	ft	0.00	mm	NTW		
669 For Rectangular Tank, Calculate Spent Cleaning Chemicals Neutralization Tank Side Water Depth	0.00	ft	0.00	mm	SWD		
670 For Rectangular Tank, Calculate Cleaning Tank Total Height	0.00	ft	0.00	mm	NTH		

B	C	D	E	F	G	H	I
871 Spent Chemicals Neutralization Pump Billing							
872 Calculate Spent Chemicals Neutralization Pump Station Flow	3291.09	gpm	207.80	l/s	Qmax		
873 Are Spent Chemicals Neutralization Pumps Included?	Yes	Y/N					
874 Spent Chemicals Neutralization Pump Type	Centrifugal						
875 Pump Time to Empty the Spent Cleaning Chemicals Neutralization Tank	2.00	hr					
876 Input Number of Turnovers per Hour	3.00	#					
877 Input Number of Active Spent Chemicals Neutralization Pumps	2.00	#					
878 Input Number of Standby Spent Chemicals Neutralization Pumps	1.00	#					
879 Calculate Total Number of Spent Chemicals Neutralization Pumps	3.00	#					
880 Calculate Spent Chemicals Neutralization Flow (each)	1046.84	gpm	103.90	l/s			
881 Input Spent Chemicals Neutralization Pump Efficiency	78.20%	%					
882 Input Meter Efficiency of Spent Chemicals Neutralization Pump	85.80%	%					
883 Is an Adjustable Frequency Drive (AFD) Used?	No	Y/N					
884 Input AFD Efficiency	100.00%	%					
885 Input Safety Margin Allocated in Pump Design Brake Horsepower	1.18						
886 Calculate Wire to Water Efficiency for Spent Chemicals Neutralization Pumps	0.71	%					
887 Input Cleaning Solution Recirculation Pump TDH	70.00	ft	21,936.00	m			
888 Calculate Spent Chemicals Neutralization Pump Horsepower	50.00	hp	37.28	kW			
889 Calculate Motor Power Consumption for Spent Chemicals Neutralization Pump (each)	.4066	hp	30.47	kW			
890 Calculate Total Power of Spent Chemicals Neutralization Pumps (ALL ACTIVE PUMPS)	81.71	hp	60.93	kW			
891 Calculate Spent Chemicals Neutralization Pump Pad Length (each)	7.94	#	2427.26	mm	NPL		
892 Calculate Spent Chemicals Neutralization Pump Pad Width (each)	3.87	#	1118.82	mm	NPW		
893 Calculate Spent Chemicals Neutralization Pump Pad Height (each)	3.81	#	1099.24	mm	NPH		
894 Cleaning Segments Calculations							
895 Calculate Number of Cleaning Segments per Train per Cleaning Event per Cleaning Chemical	1.25	#					
896 Calculate Number of Cleaning Segments per Cleaning Event for Entire Plant	7.50	#					
897 Calculate Total Average Volume of Cleaning Solution per Cleaning Segment	20717.67	gal	78424.91	L			
898 Calculate Total Volume of each Chemical Cleaning Solution used for Plant Cleaning	155342.51	gal	588186.79	L			
899 Calculate Total Annual Volume of each Chemical Cleaning Solution	310765.02	gal	1178373.58	L			
700							
701 Membrane Pilot Skid Area Requirements							
702 Is Membrane Pilot Skid Required?	Yes	Y/N					
703 Input Membrane Pilot Skid Length	25.00	ft	6,096.00	mm	PSL	Generally 20 feet to include all required components	
704 Input Membrane Pilot Skid Width	28.00	ft	6,066.00	mm	PSW	Generally 20 feet to include all required components	
705 Input Membrane Pilot Skid Height	10.00	ft	3,048.00	mm	MSH		
706							
707 Membrane Train Pipe Trench Area Requirements							
708 Calculate Reverse Osmosis Influent Header Diameter	30.00	in	762.00	mm			
709 Calculate RO Permeate Header to Flux Tank Diameter	24.00	in	609.60	mm			
710 Calculate Permeate Flushing Header Diameter	10.00	in	254.00	mm			
711 Calculate RO Brewe Head Diameter	16.00	in	408.40	mm			
712 Calculate Cleaning Solution Supply Header Diameter	10.00	in	254.00	mm			
713 Calculate Permeate Cleaning Solution Return Header Diameter	3.00	in	76.20	mm			
714 Calculate Brewe Cleaning Solution Return Header Diameter	10.00	in	254.00	mm			
715 Input Clear Distance Between Pipes in Gallery	8.89	ft	182.48	mm		Typically 0.5 to 1 foot	
716 Input Clear Distance Between Pipes and Trench Walls	0.89	ft	182.48	mm		Typically 0.5 to 1 foot	
717 Calculate Minimum Membrane Train Pipe Trench Width	13.00	ft	3862.40	mm	TW2		
718 Input Clear Distance Between Bottom of Largest Pipe Header and Pipe Trench Bottom	1.00	ft	384.80	mm		Typically 1 foot	
719 Calculate Clear Distance Between Top of Largest Pipe Header and Top of Pipe Trench	9.00	ft	1524.00	mm		Typically 2 pipe diameters of the largest pipe inside the trench	
720 Calculate Minimum Membrane Trains Pipe Trench Depth	8.50	ft	2590.80	mm	TD2		
721							
722 Construction-Related Inputs:							
723 Input Process Building Depth of Burial	8.00	ft					
724 Input Roll-Up Door Width	14.00	ft	4287.20	mm	RUD		
725 Is CIP Area Covered?	Yes	Y/N					
726 Is Flushing System Area Covered?	Yes	Y/N					
727 Is Chemical Neutralization Area Covered?	Yes	Y/N					
728 Is Pilot Skid Area Covered?	Yes	Y/N					
729 Input Single Entry Door Width	4.00	ft	1219.20	mm	SED	Typically 3 to 4 feet	
730 Input Double Entry Door Width	6.00	ft	1828.80	mm	DED	Typically 5 to 8 feet	
731 Input Number of Additional Roll Up Doors	1.00	#					
732 Calculate Number of Same Size Membrane Train Roll Up Doors	6.00	#				Equal to the total number of membrane trains	
733 Calculate Total Number of 3x6 Size Roll Up Doors in the Building	7.00	#					
734 Input Number of Same Size Single Entry Doors in the Building	3.00	#					
735 Input Number of Same Size Double Entry Doors in the Building	1.00	#					
736							
737 Inputs for Other Areas Inside this Module:							
738 Are other spaces (office, control room, lab) to be included?	Yes	Y/N					
739 Input Space Requirements for Control Room	184.00	ft	13.84	m2			
740 Input Number of Offices Desired	2.00	#					
741 Calculate Space Requirements for Offices	200.00	ft	18.58	m2			
742 Input Space Requirements for Storage Room	268.00	ft	13.84	m2			
743 Input Space Requirements for W4W Laboratory	288.00	ft	23.23	m2			
744 Input Space Requirements for Restrooms	268.00	ft	23.23	m2			
745 Input Space Requirements for Other Room	168.00	ft	13.84	m2			
746 Input Length to Width Ratio for Control Room	1.00	#					
747 Calculate Control Room Length	15.00	ft	4572.00	mm			
748 Calculate Control Room Width	10.00	ft	3048.00	mm			
749 Input Length to Width Ratio for Office Space	2.00	#					
750 Calculate Office Space Length	20.00	ft	6096.00	mm			
751 Calculate Office Space Width	10.00	ft	3048.00	mm			
752 Input Length to Width Ratio for Storage Room	1.00	#					
753 Calculate Storage Room Length	17.37	ft	5279.28	mm			
754 Calculate Storage Room Width	11.55	ft	3510.53	mm			
755 Input Length to Width Ratio for Laboratory Room	2.00	#					
756 Calculate Laboratory Room Length	22.36	ft	6815.54	mm			
757 Calculate Laboratory Room Width	11.18	ft	3407.77	mm			
758 Calculate Restrooms Length	2.00	#					
759 Calculate Restrooms Width	22.30	ft	6815.54	mm			
760 Calculate Restrooms Length	11.18	ft	3407.77	mm			
761 Input Length to Width Ratio for Other Rooms	1.00	#					
762 Calculate Other Rooms Length	15.00	ft	4572.00	mm			
763 Calculate Other Rooms Width	10.00	ft	3048.00	mm			
764 Calculations for Each Side of the Hallway							
765 Calculate Other Spaces Length	17.32	ft	5279.29	mm			
766 Calculate Other Spaces Width	12.36	ft	3683.54	mm			
767 Input Hallway Width	6.00	ft	1824.80	mm			
768 Calculate Hallway Length	32.36	ft	9863.54	mm			
769 Calculate Hallway Area	101.60	ft	15.03	m2			
770							
771 Mechanical - Process Pipe Sizing							
772 Number of Active RO Trains (for pipe sizing)	5.00	#					
773 Number of Standby RO Trains	1.00	#					
774 Total Number of RO Trains (for pipe quantity)	8.00	#					
775 Number of Rows of RO Skids	1.00	#					
776 Number of RO Skids per Row	8.00	#					
777 Permeate Flow per Train	1.80	mgd	8.81	ML/d			
778 Permeate Flow for 1st Stage Vessels per Train	1.28	mgd	4.77	ML/d			
779 Permeate Flow for 2nd Stage Vessels per Train	0.54	mgd	2.04	ML/d			
780 Permeate Flow for 3rd Stage Vessels per Train	0.00	mgd	0.00	ML/d			
781 Permeate Recovery	0.75	%					
782 Number of Equal Flow Cartridge Filters Installed (including standby)	0.00	#					
783 Number of Equal Flow Bypass Blend Cartridge Filters Installed (including standby)	0.00	#					
784 Total Number of RO Sub Trains per Skid	0.25	#					

B	C	D	E	F	G	H	I
785 Number of 1st Stage Sub Trains per Skid	0.17	#					
786 Number of 2nd Stage Sub Trains per Skid	0.08	#					
787 Number of 3rd Stage Sub Trains per Skid	0.00	#					
788 Number of Vessels Being Cleaned at Once	24.00	#					
789 Calculate Total Permeate Flow	9.00	mgd	34.07	ML/d			
790 Calculate Total Permeate Flow per Row of RO Skids	9.00	mgd	34.07	ML/d			
791 Calculate Total Feedwater Flow	12.00	mgd	45.42	ML/d			
792 Calculate Total Feedwater Flow per Row of RO Skids	12.00	mgd	45.42	ML/d			
793 Calculate Feedwater Flow for 1st Stage Vessels per Train	2.40	mgd	9.08	ML/d			
794 Calculate Feedwater Flow for 2nd Stage Vessels per Train	1.14	mgd	4.33	ML/d			
795 Calculate Feedwater Flow for 3rd Stage Vessels per Train	0.00	mgd	0.00	ML/d			
796 Calculate Brine Flow Out of 1st Stage Vessels per Train	1.14	mgd	4.33	ML/d			
797 Calculate Brine Flow Out of 2nd Stage Vessels per Train	0.60	mgd	2.27	ML/d			
798 Calculate Brine Flow Out of 3rd Stage Vessels per Train	0.00	mgd	0.00	ML/d			
799 Calculate Cartridge Filter Flow per Filter	0.00	mgd	0.00	ML/d			
800 Clearing Solution Flow Rate for 8" Elements	860.00	gpm	60.57	l/s			
801 Cartridge Filters Included? (1="Yes", 0="No")	0.00	YN					
802 Bypass Blend Flow	3.00	mgd	11.36	ML/d			
803							
Pipe Name	Pipe ID	Flow, mgd	Input Velocity - Typically 8 fpm or less	Unit (English)	Input Velocity	Unit (Metric)	Pipe Size, inches
804							
805 Cartridge Filtration Influent Header	CFIH	0.00	4.00	ft/s	1.22	m/s	8.00
806 Cartridge Filtration Influent Lateral	CFIL	0.00	4.00	ft/s	1.13	m/s	0.00
807 Cartridge Filtration Effluent Lateral	CFEL	0.00	4.00	ft/s	1.13	m/s	0.00
808 Cartridge Filtration Effluent Header	CFEH	0.30	4.00	ft/s	1.22	m/s	0.00
809 Reverse Osmosis Influent Dosing Header	RODH	12.00	6.00	ft/s	1.22	m/s	30.00
810 Reverse Osmosis Influent Header	ROH	12.00	6.00	ft/s	1.22	m/s	30.00
811 High Pressure Pump Inlet	HPP	2.40	1.00	ft/s	2.13	m/s	10.00
812 High Pressure Pump Discharge	HPPD	2.40	1.00	ft/s	2.13	m/s	10.00
813 Low Pressure Brine Outlet (FRO) Discharge	LPOH	0.80	2.00	ft/s	2.13	m/s	8.00
814 Reverse Osmosis Influent Lateral (1st Stage)	RO1L	2.40	6.00	ft/s	1.82	m/s	12.00
815 Reverse Osmosis Influent Lateral (2nd Stage)	RO2L	1.14	7.09	ft/s	2.13	m/s	8.00
816 Reverse Osmosis Influent Lateral (3rd Stage)	RO3L	0.00	7.09	ft/s	2.13	m/s	0.00
817 Reverse Osmosis Influent Skid Lateral (1st Stage)	ROSL1	2.40	6.00	ft/s	1.82	m/s	12.00
818 Reverse Osmosis Influent Skid Lateral (2nd Stage)	ROSL2	1.14	7.09	ft/s	2.13	m/s	8.00
819 Reverse Osmosis Influent Skid Lateral (3rd Stage)	ROSL3	0.00	7.09	ft/s	2.13	m/s	0.00
820 Brine Skid Sub Lateral (1st Stage)	BSL1	1.14	8.00	ft/s	1.61	m/s	10.00
821 Brine Skid Sub Lateral (2nd Stage)	BSL2	0.60	3.00	ft/s	0.91	m/s	8.00
822 Brine Skid Sub Lateral (3rd Stage)	BSL3	0.00	3.00	ft/s	0.91	m/s	0.00
823 Brine Lateral (1st Stage)	BL1	1.14	4.00	ft/s	1.22	m/s	10.00
824 Brine Lateral (2nd Stage)	BL2	0.60	4.00	ft/s	2.21	m/s	8.00
825 Brine Lateral (3rd Stage)	BL3	0.00	2.00	ft/s	0.51	m/s	0.00
826 Brine Header	BH	3.00	6.00	ft/s	1.22	m/s	16.00
827 Permeate Lateral (1st Stage)	PL1	1.20	6.00	ft/s	1.82	m/s	10.00
828 Permeate Lateral (2nd Stage)	PL2	0.54	6.00	ft/s	1.82	m/s	6.00
829 Permeate Lateral (3rd Stage)	PL3	0.00	6.00	ft/s	1.82	m/s	0.00
830 Permeate Header (1st Stage)	PH1	1.20	6.00	ft/s	1.82	m/s	24.00
831 Permeate Header (2nd Stage)	PH2	0.54	6.00	ft/s	1.82	m/s	10.00
832 Cleaning Solution Pump Suction Lateral	CSPSL	1.38	6.00	ft/s	1.82	m/s	10.00
833 Cleaning Solution Pump Discharge Lateral	CSPDL	1.38	6.00	ft/s	1.82	m/s	10.00
834 Cleaning Solution Pump Discharge Header	CSPDH	1.38	6.00	ft/s	1.82	m/s	10.00
835 Cleaning Solution Pump Return	CSPR	1.38	6.00	ft/s	1.82	m/s	10.00
836 Cleaning Solution Return Lateral	CCSR	1.38	6.00	ft/s	1.82	m/s	10.00
837 Reverse Cleaning Solution Return Lateral	RCR	0.14	4.00	ft/s	1.82	m/s	3.50
838 Reverse Cleaning Solution Return Lateral	RCRL	0.14	6.00	ft/s	1.82	m/s	3.00
839 Reverse Permeate Lateral	PPL	1.38	6.00	ft/s	1.82	m/s	10.00
840 Reverse Permeate Lateral	CPL	1.38	6.00	ft/s	1.82	m/s	10.00
841 Reverse Permeate Lateral	CFL	1.38	6.00	ft/s	1.82	m/s	10.00
842 Reverse Permeate Lateral	C3SH	1.38	6.00	ft/s	1.82	m/s	10.00
843 Reverse Permeate Supply Header	C3SL	1.38	6.00	ft/s	1.82	m/s	10.00
844 Brine Cleaning Solution Return Header	BCSRH	1.38	6.00	ft/s	1.82	m/s	10.00
845 Brine Cleaning Solution Return Lateral	BCSL1	1.38	6.00	ft/s	1.82	m/s	10.00
846 Permeate Cleaning Solution Return Header	PCRH	0.14	4.00	ft/s	1.82	m/s	3.50
847 Permeate Cleaning Solution Return Lateral	PCRL	0.14	6.00	ft/s	1.82	m/s	3.00
848 Permeate Flushing Line	PFL	1.38	6.00	ft/s	1.82	m/s	10.00
849 Bypass Blend Cartridge Filter Influent	BBCFL	3.00	7.09	ft/s	2.13	m/s	12.00
850 Bypass Blend Cartridge Filter Effluent	BCFEL	3.00	7.09	ft/s	2.13	m/s	12.00
851 Bypass Blend Line	BL	3.00	6.00	ft/s	1.82	m/s	12.00
852 Common Spare Reverse Pressure Pump Suction	CSPRS	0.00	2.00	ft/s	0.51	m/s	0.00
853 Common Spare High Pressure Pump Discharge	CSPHD	0.00	2.00	ft/s	0.51	m/s	0.00
854							
Estimating Dimensions:	Value English	Unit (English)	Value Metric	Unit (Metric)	Name	Comment	Red Flags
855 Building Width Dimensions							
856 Main Process Cartridge Filter Vessel Length	8.23	ft	1898.65	mm	CFL		
857 Clear Distance Around Cartridge Filters	2.00	ft	609.60	mm	D1A		
858 CIP Cartridge Filter Vessel Width/Diameter	3.31	ft	1068.40	mm	CCFW		
859 Roll-Up Door Width Between CIP and RO	14.00	ft	4287.20	mm	RUD		
860 Length of High Pressure Pump	2.50	ft	762.00	mm	HPP		
861 Clear Distance Between HPP and ERU	3.00	ft	914.40	mm	D3		
862 Energy Recovery Unit Width	0.00	ft	0.00	mm	ERW		
863 Clear Distance Between ERU and RO Train	0.00	ft	0.00	mm	D3A		
864 Clear Distance Between Interstage Booster Pump and RO Train	3.00	ft	914.40	mm	D3B		
865 Membrane Train Width	47.67	ft	14528.00	mm	MTW		
866 Pilot Skid Width	2.00	ft	7620.00	mm	PSW		
867 Chiller Width	0.00	ft	0.00	mm	CHW		
868 Clear Distance Around All CIP Components	4.00	ft	1219.20	mm	D7		
869 Clear Distance between CIP Tanks	8.00	ft	2438.40	mm	D7A		
870 Clear Distance between CIP Tank and Building Wall on the Side with Access to Superseals	8.00	ft	2438.40	mm	D7B		
871 Common Access Platform Width to CIP Tank(s)	6.00	ft	1828.80	mm	D7C		
872 Cleaning Pump Width	2.71	ft	824.70	mm	CPW		
873 Cleaning Solution Tank Width	11.00	ft	3352.80	mm	CTW		
874 Flushing Tank Width	12.00	ft	3657.60	mm	FTW		
875 Flushing Pump Length	(3.40)	ft	(1035.41)	mm	FPL		
876 Permeate Transfer Pump Length	0.00	ft	0.00	mm	PTPL		
877 Neutralization Tank Width	17.00	ft	5181.60	mm	NTW		
878 Neutralization Pump Length	7.95	ft	2427.26	mm	NPL		
879 Dry Chemical Transfer Pump Length	0.00	ft	0.00	mm	DPL		
880 Dry Chemical Solution Tank Length	0.00	ft	0.00	mm	DTL		
881 Building Length Dimensions							
882 Clear Distance Around Cartridge Filters	0.00	ft	0.00	mm	D1B		
883 Clear Distance from Membrane Train to Wall (Feed Pump Side)	10.00	ft	3048.00	mm	D4		
884 Clear Distance from Membrane Train to Wall (ERD Side)	10.00	ft	3048.00	mm	D4	Used In Building Calculations	
885 Clear Distance from Membrane Train to Feed Pump	4.00	ft	1219.20	mm	D10		
886 Clear Distance from Membrane Train to Membrane Train and Membrane to Cartridge Filters	10.00	ft	3048.00	mm	D5		
887 Clear Distance from Last RO Train to Building Wall	8.00	ft	2438.40	mm	D11		
888 Static Mixer Length	0.00	ft	0.00	mm	SML		
889 Membrane Train Length	9.00	ft	2743.20	mm	MTL		
890 Energy Recovery Unit Length	0.00	ft	0.00	mm	ERL		
891 Clear Distance Between Membrane Trains	8.00	ft	2438.40	mm	D8		
892 Width of High Pressure Pump	2.17	ft	660.40	mm	HPPW		
893 Cleaning Pump Length	3.59	ft	1094.88	mm	CPL		
894 Main Process Cartridge Filter Vessel Width	1.51	ft	1058.40	mm	CPW		
895 CIP Cartridge Filter Vessel Length/Diameter	1.51	ft	1058.40	mm	CCFL		
896 Pilot Skid Length	2.00	ft	7620.00	mm	PSL		
897 Flushing Tank Length	12.00	ft	3657.60	mm	FTL		
898 Clear Distance Between Flushing & Neutralization Tanks	8.00	ft	2438.40	mm	D8		
899 Clear Distance Around Flushing, Permeate Transfer, & Neutralization Pumps	2.00	ft	914.40	mm	D9		
900 Flushing Pump Width	0.00	ft	0.00	mm	TPW		
901 Permeate Transfer Pump Width	0.00	ft	0.00	mm	CHL		
902 Chiller Length	5.00	ft	0.00	mm	CTL		
903 Cleaning Tank Length	11.00	ft	3352.80	mm	CTL		
904 Neutralization Tank Length	17.00	ft	5181.60	mm	HTL		
905 Neutralization Pump Width	3.47	ft	1118.62	mm	NPW		
906 Dry Chemical Transfer Pump Width	0.00	ft	0.00	mm	DPW		
907 Dry Chemical Solution Tank Width	0.00	ft	0.00	mm	DTW		
908 Building Height Dimensions							
909 Energy Recovery Unit Height	0.00	ft	0.00	mm	ERH		
910 High Pressure Pump Height	7.84	ft	2390.90	mm	HPRH		
911 High Pressure Brine Inlet Above Floor	1.50	ft	457.20	mm	HPBHF		
912 Membrane Train Height	14.83	ft	4819.03	mm	MTH		
913 Membrane Header to Dump Above Floor	14.83	ft	4819.03	mm	PHOH		
914 Reverse Osmosis Influent Lateral Above Floor	18.33	ft	4977.13	mm	ROBLH		
915 Brine Lateral Above Floor	18.33	ft	4977.13	mm	BLH		
916 Reverse Osmosis Influent Header Above Floor	17.83	ft	5434.33	mm	ROBHH		
917 Cleaning Solution Supply Above Floor	17.83	ft	5434.33	mm	CSSH		

B	C	D	E	F	G	H	I
318 Brine Cleaning Solution Return Above Floor	17.83	ft	5434.33	mm	BCSRH		
317 Permeate Header to Flush Tank Above Floor	17.83	ft	5434.33	mm	PFHT		
318 Reverse Osmosis Influent Dosing Line Above Floor	20.83	ft	6348.73	mm	RODLH		
319 CIP Cartridge Filter Height	9.83	ft	2997.20	mm	CCFH		
320 Cleaning Pump Discharge Header Above Floor	12.83	ft	3911.60	mm	CSDPHH		
321 Cleaning Tank Height	16.00	ft	5151.98	mm	CTH		
322 Main Process Cartridge Filter Height	0.00	ft	0.00	mm	CFH		
323 Flushing Tank Height	17.25	ft	5257.80	mm	FTH		
324 Flushing Pump Height	(0.11)	ft	(217.66)	mm	FPH		
325 Permeate Transfer Pump Height	0.00	ft	0.00	mm	TPH		
326 Chiller Height	0.00	ft	0.00	mm	CHH		
327 Cleaning Pump Height	2.08	ft	634.48	mm	CPH		
328 Neutralization Tank Height	21.40	ft	6522.19	mm	NTH		
329 Neutralization Pump Height	3.81	ft	1099.24	mm	NPH		
330 Dry Chemical Solution Tank Height	0.00	ft	0.00	mm	DTH		
331 Dry Chemical Transfer Pump Height	0.00	ft	0.00	mm	DPH		
332 Pilot Membrane Stdd Height	10.00	ft	3048.00	mm	MSH		
333 Individual Membrane Train Dimensions							
334 Number of Pressure Vessels Stacked in Vertical Position per Train (each)	6.00	#			PV1		
335 Number of Pressure Vessels Stacked in Horizontal Position per Subtrain (each)	4.00	#			PVHS		
336 Horizontal Distance Between Pressure Vessel Centerlines In Train	2.00	ft	609.60	mm	PVH		
337 Outside Diameter of Pressure Vessel	23.10	in	588.74	mm	PVD		
Horizontal Distance between Centerline of Subtrain Header and Centerline of First Pressure Vessel	1.54	ft	468.93	mm	SHPV		
338 Clear Distance between Membrane Subtrains in a Row	3.00	ft	914.40	mm	COST		
339 Membrane Train Width	47.67	ft	14528.60	mm	MTW		
340 Membrane Subtrain Width	9.00	ft	2743.20	mm	BSTW		
341 Membrane Train Length	9.00	ft	2743.20	mm	MTL		
342 Vertical Distance from Floor Slab to Centerline of Lowest Pressure Vessel in Subtrain	2.20	ft	670.58	mm	FSCV		
343 Vertical Distance Between Pressure Vessel Centerlines in Subtrain	2.33	ft	711.20	mm	PV1		
344 Membrane Train Height	14.83	ft	4519.93	mm	MTH		
345 Electrical Room Dimensions							
346 Clear Distance from Wall to MCC	2.00	ft	609.60	mm	CD1		
347 MCC Length	31.67	ft	9652.00	mm	MCC		
348 Clear Distance between MCC and Small AFD's	1.00	ft	304.80	mm	CD2		
349 Small AFD Length	44.64	ft	13606.27	mm	SADF		
350 Clear Distance between Small AFD's and Large AFD's	3.00	ft	914.40	mm	CD3		
351 Large AFD Length	0.00	ft	0.00	mm	LAFD		
352 Clear Distance between Large AFD's and Switchgear	3.00	ft	914.40	mm	CD4		
353 Switchgear Length	0.00	ft	0.00	mm	SWGWR		
354 Clear Distance from Switchgear to Contingency Length	3.00	ft	914.40	mm	CD5		
355 Contingency Length	10.00	ft	3045.00	mm	CONT		
356 Clear Distance behind Widget Electrical Equipment	0.00	ft	0.00	mm	CD6		
357 Largest Depth of Electrical Equipment	2.08	ft	635.00	mm	SWGWRD		
358 Clear Distance in Front of Electrical Equipment	0.00	ft	2743.20	mm	CD7		
359							
EQUIPMENT SUMMARY:							
360 Equipment Item	Quantity	HP per Each		Dimensions per Each (ft)			
		Design	Average	Length	Width	Height	Diameter
361 Pumps							
362 High Pressure Membrane Feed Pumps (Active)	3.00	346.35	224.59	2.50	2.17	7.84	
363 High Pressure Membrane Feed Pumps (Standby)	1.00	346.35		2.50	2.17	7.84	
364 Interstage Booster Pumps (Active)	3.00	30.79	34.11	2.00	2.60	8.00	
365 Interstage Booster Pumps (Standby)	1.00	30.79		2.00	2.60	8.00	
366 Pusher Pump (Active)	1.00	10.00	4.05	(1.20)	(1.20)	(0.71)	
367 Pusher Pump (Standby)	1.00	10.00		(1.20)	(1.20)	(0.71)	
368 Transfer Pumps (Active)	0.00	0.00	0.00	0.00	0.00	0.00	
369 Transfer Pumps (Standby)	0.00	0.00	0.00	0.00	0.00	0.00	
370 Permeate Transfer Pumps (Active)	1.00	80.00	48.61	3.58	2.71	2.08	
371 Cleaning Solution Recirculation Pump (Standby)	1.00	80.00		3.58	2.71	2.08	
372 Dry Chemicals Transfer Pump (Active)	0.00	0.00	0.00	0.00	0.00	0.00	
373 Dry Chemicals Transfer Pump (Standby)	0.00	0.00	0.00	0.00	0.00	0.00	
374 Scale Chemicals Transfer Pump (Active)	2.00	50.00	40.88	7.28	3.67	3.61	
375 Scale Chemicals Transfer Pump (Standby)	1.00	50.00		7.28	3.67	3.61	
376 Pre-treatment Chemical Metersing Pump							
377 Sulfuric Acid Active Metersing Pump	1.00	1.00		3.00	3.00	1.50	
378 Sulfuric Acid Standby Metersing Pump	1.00	1.00		3.00	3.00	1.50	
379 Hydrochloric Acid Active Metersing Pump	0.00	0.00	0.00	0.00	0.00	0.00	
380 Hydrochloric Acid Standby Metersing Pump	0.00	0.00	0.00	0.00	0.00	0.00	
381 Scale Inhibitor Active Metersing Pump	1.00	1.00		3.00	3.00	1.50	
382 Scale Inhibitor Standby Metersing Pump	1.00	1.00		3.00	3.00	1.50	
383 Other Chemical 1 Active Metersing Pump	0.00	0.00	0.00	0.00	0.00	0.00	
384 Other Chemical 1 Standby Metersing Pump	0.00	0.00	0.00	0.00	0.00	0.00	
385 Other Chemical 2 Active Metersing Pump	0.00	0.00	0.00	0.00	0.00	0.00	
386 Other Chemical 2 Standby Metersing Pump	0.00	0.00	0.00	0.00	0.00	0.00	
387 Other Chemical 3 Active Transfer Pump	0.00	0.00	0.00	0.00	0.00	0.00	
388 Other Chemical 3 Standby Transfer Pump	0.00	0.00	0.00	0.00	0.00	0.00	
389 Other Chemical 4 Active Transfer Pump	0.00	0.00	0.00	0.00	0.00	0.00	
390 Other Chemical 4 Standby Transfer Pump	0.00	0.00	0.00	0.00	0.00	0.00	
391 Energy Recovery Devices (Turbocharger)							
392 Turbocharger for Interstage Pressure Boost (Active)	0.00	0.00	0.00	0.00	0.00	0.00	
393 Turbocharger for Interstage Pressure Boost (Standby)	0.00	0.00	0.00	0.00	0.00	0.00	
394 Tanks							
395 Flushing Tanks	1.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)	0.00	0.00	17.23	12.00
396 Cleaning Solution Tanks	2.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)	0.00	0.00	18.90	11.00
397 Dry Chemicals Solution Preparation Tanks	0.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)	0.00	0.00	0.00	0.00
398 Neutralization Tanks	2.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)	0.00	0.00	21.40	17.00
399 Pre-treatment Chemicals Bulk Storage Tanks							
400 Sulfuric Acid	1.00	PLS	(FRP, Polyethylene, Phenolic Lined Steel)			5.00	14.00
401 Hydrochloric Acid	0.00	PLS	(FRP, Polyethylene, Phenolic Lined Steel)			14.00	10.00
402 Scale Inhibitor	1.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)			16.00	10.00
403 Other Chemical 1	0.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)			16.00	10.00
404 Other Chemical 2	0.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)			16.00	10.00
405 Other Chemical 3	0.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)			11.00	12.00
406 Other Chemical 4	0.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)			11.00	12.00
407 Dry CIP Chemicals Bulk Storage Silos							
408 Other Acid	0.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)			0.00	9.00
409 Sodium Phosphate	0.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)			14.00	10.00
410 Sodium Trichlorophosphate	0.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)			18.00	13.00
411 Other Chemical 5	0.00	FRP	(FRP, Polyethylene, Phenolic Lined Steel)			11.00	12.00
412 Mixers							
413 CIP Tank Mixers	2.00		13.00			0.00	11.00
414 Dry Chemicals Mixers	0.00		0.00			0.00	10.00
415 Heaters & Chillers							
416 CIP Heaters	4.00	388 kw per each	5.35			0.00	
417 CIP Chillers	0.00	299213 BTU/hr each	0.00	0.00	0.00	0.00	
418 Dry Chemicals Heater	0.00	0 kw per each	0.00				
419 ELECTRICAL EQUIPMENT ROOM SIZING MODEL:							
420 Item	Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 50hp	MCC Spaces for Breakers	Total MCC Spaces
421							

B	C	D	E	F	G	H	I
1038 High Pressure Membrane Feed Pumps (Active)	5.00	348.35	Yes	0.00	0.00	25.00	
1039 High Pressure Membrane Feed Pumps (Standby)	1.00	348.35	Yes	0.00	0.00	4.00	
1040 Low Pressure Booster Pumps (Active)	5.00	73.79	Yes	0.00	30.00	10.00	
1041 Low Pressure Booster Pumps (Standby)	1.00	73.79	Yes	0.00	8.00	2.00	
1042 Flushing Pumps (Active)	1.00	10.00	Yes	0.00	4.00	2.00	
1043 Flushing Pumps (Standby)	1.00	10.00	Yes	0.00	4.00	2.00	
1044 Permeate Transfer Pumps (Active)	0.00	0.00	Yes	0.00	0.00	0.00	
1045 Permeate Transfer Pumps (Standby)	0.00	0.00	Yes	0.00	0.00	0.00	
1046 Chlorine Addition Recirculation Pumps (Active)	1.00	60.00	Yes	0.00	0.00	2.00	
1047 Chlorine Addition Recirculation Pumps (Standby)	1.00	60.00	Yes	0.00	0.00	2.00	
1048 Dry Chemicals Transfer Pumps (Active)	0.00	0.00	No	0.00	0.00	0.00	
1049 Dry Chemicals Transfer Pumps (Standby)	2.00	50.95	No	0.00	0.00	0.00	
1050 Smart Chemicals Neutralization Pumps (Active)	1.00	50.00	No	3.00	0.00	0.00	
1051 Smart Chemicals Neutralization Pumps (Standby)	1.00	50.00	No	3.00	0.00	0.00	
1052 Sulfuric Acid Active Metering Pump	1.00	1.00	No	0.00	0.00	0.00	
1053 Sulfuric Acid Standby Metering Pump	0.00	0.00	No	0.00	0.00	0.00	
1054 Hydrochloric Acid Active Metering Pump	0.00	0.00	No	0.00	0.00	0.00	
1055 Hydrochloric Acid Standby Metering Pump	0.00	0.00	No	0.00	0.00	0.00	
1056 Scale Inhibitor Active Metering Pump	1.00	1.00	No	2.00	0.00	0.00	
1057 Scale Inhibitor Standby Metering Pump	1.00	1.00	No	2.00	0.00	0.00	
1058 Other Chemical 1 Active Metering Pump	0.00	0.00	No	0.00	0.00	0.00	
1059 Other Chemical 1 Standby Metering Pump	0.00	0.00	No	0.00	0.00	0.00	
1060 Other Chemical 2 Active Metering Pump	0.00	0.00	No	0.00	0.00	0.00	
1061 Other Chemical 2 Standby Metering Pump	0.00	0.00	No	0.00	0.00	0.00	
1062 Sodium Hydroxide Active Transfer Pump	1.00	0.38	No	2.00	0.00	0.00	
1063 Sodium Hydroxide Standby Transfer Pump	0.00	0.00	No	0.00	0.00	0.00	
1064 Hydrochloric Acid Active Transfer Pump	0.00	0.00	No	0.00	0.00	0.00	
1065 Hydrochloric Acid Standby Transfer Pump	0.00	0.00	No	0.00	0.00	0.00	
1066 Sodium EDTA Active Transfer Pump	0.00	0.00	No	0.00	0.00	0.00	
1067 Sodium EDTA Standby Transfer Pump	0.00	0.00	No	0.00	0.00	0.00	
1068 Other Chemical 3 Active Transfer Pump	0.00	0.00	No	0.00	0.00	0.00	
1069 Other Chemical 3 Standby Transfer Pump	0.00	0.00	No	0.00	0.00	0.00	
1070 Other Chemical 4 Active Transfer Pump	0.00	0.00	No	0.00	0.00	0.00	
1071 Other Chemical 4 Standby Transfer Pump	0.00	0.00	No	0.00	0.00	0.00	
1072 Other Tank Moves	2.00	13.00	No	8.00	0.00	0.00	
1073 CIP Heaters	4.00	\$20.91	No	48.00	0.00	0.00	
1074 Dry Chemicals Mixers	0.00	0.00	No	0.00	0.00	0.00	
1075 Dry Chemicals Heater	0.00	0.00	No	0.00	0.00	0.00	
1076 TOTAL		4191.29		78.00	44.00	50.00	170.00
1077 Total Connected Load	4800.44						
1078							
1079 Electrical Equipment Widths							
1080 Equipment			Depth (ft)				
1081 MCC			1.67				
1082 Small AFD's			2.08				
1083 Large AFD's			0.60				
1084 Switchgear			0.60				
1085 Maximum Depth			2.08				
1086 Clear Distances							
1087 Description			Symbol	Width (ft)	Length (ft)	Suggested Value (ft)	Comment
1088 Clear Distance from Wall to MCC (ft)			CDEL1		2.00	2.00	Clear Distance between wall and MCC
1089 Clear Distance between MCC and Small AFD's (ft)			CDEL2		1.00	1.00	Clear Distance between MCC and Small AFD
1090 Clear Distance between Small AFD's and Large AFD's (ft)			CDEL3		3.00	3.00	Clear Distance between Small AFD and Large AFD
1091 Clear Distance between Large AFD's and Switchgear (ft)			CDEL4		3.00	3.00	Clear Distance between Large AFD and Switchgear
1092 Clear Distance from Switchgear to Contingency Length (ft)			CDEL5		3.00	3.00	Clear Distance between Switchgear and Contingency Zeros
1093 Clear Distance behind Widespread Electrical Equipment (ft)			CDEL6	4.00		4.00	Clear Distance behind Switchgear (If there is no Switchgear this distance will be Zero)
1094 Clear Distance in Front of Electrical Equipment			CDEL7	9.00		9.00	Clear Distance in front of Equipment
1095 Contingency Length (ft)			CONT		19.00	10.00	Contingency length
1096							
1097 Electric Room Length (ft):							
1098 CD1		2.00					
1099 MCC		31.67					
1100 CD2		1.00					
1101 Small AFD's		44.64					
1102 Large AFD's		3.10					
1103 CDA		0.00					
1104 Switchgear		0.00					
1105 CDS		3.00					
1106 Contingency		10.00					
1107 Total Length		44.64					
1108							
1109 Electric Room Width (ft):							
1110 CD8		0.00					
1111 Maximum Equipment Depth		2.08					
1112 CD7		0.00					
1113 Total Width		20.98					
1114							
1115							
FACILITY DIMENSION CALCULATIONS FOR CHEMICAL ROOM:							
1116 Estimating Calculations for Chemical Room (Pretreatment Chemicals)			Bulfonic Acid	Hydrochloric Acid	Scale Inhibitor	Other Pretreatment	Other Pretreatment Chemical
1117 Logic Tests ("1" = Yes, "0" = No):							
1118 Is "Other" Chemical Used for Pretreatment? (1 = Yes 0 = No)		0	0	0	0	0	
1119 Is this Chemical Feed System included for Pretreatment?		1	0	1	0	0	2
1120 Is this the Method of Delivery "Tank Truck"?		1	1	1	1	1	
1121 Is this Chemical Facility Covered? (1 = Yes, 0 = No)		1	1	1	1	1	6
1122 Number of Bulk Tanks (each)		1	0	1	0	0	
1123 Diameter of Bulk Tanks (ft)		14.00	10.00	10.00	10.00	10.00	
1124 Height of Bulk Tanks (ft)		5.00	14.00	10.00	10.00	10.00	
1125 Volume of Each Bulk Tank (gallons)		5757.66	8225.28	9400.30	9400.30	9400.30	
1126 Bulk Tank Material		PLS	PLS	FRP	FRP	FRP	
1127 Length of Module (Tank Truck) (ft)		24.00	0.00	18.00	0.00	0.00	42
1128 Length of Module (Tele) (ft)		0.00	0.00	0.00	0.00	0.00	-
1129 Length of Module (Drum) (ft)		0.00	0.00	0.00	0.00	0.00	-
1130 Width of Module (Tank Truck) (ft)		36.00	0.00	31.00	0.00	0.00	38
1131 Width of Module (Tele) (ft)		0.00	0.00	0.00	0.00	0.00	-
1132 Width of Module (Drum) (ft)		0.00	0.00	0.00	0.00	0.00	-
1133 Area of Module (SF)		926.00	0.00	558.00	0.00	0.00	
1134 Number of Bulk Tanks (each)		1.00	0.00	1.00	0.00	0.00	
1135 Diameter of Bulk Tank (ft)		14.00	0.00	10.00	0.00	0.00	
1136 Volume of Each Bulk Tank (gallons)		4422.69	0.00	7357.75	0.00	0.00	
1137 Total Tank Material		PLS	PLS	FRP	FRP	FRP	
1138 Total Number of Metering Pumps (Pretreatment)		2.00	0.00	2.00	0.00	0.00	
1139 Containment Wall Height (Feet)		2.02	0.00	3.74	0.00	0.00	
1140 Slab and Containment Wall							
1141 Input Slab on Grade Thickness		8.00	in	364.28	mm		Model based on 9"
1142 Slab on Grade Thickness		0.75	ft	228.63	mm		
1143 Input Containment Wall Thickness		8.00	in	263.28	mm		Model based on 8"
1144 Containment Wall Thickness		0.67	ft	263.20	mm		
1145 Chemical Room Corridors							
1146 Chemical Room Corridor Length		42.00	ft	12801.00	mm		
1147 Chemical Room Corridor Width		0.00	ft	0.00	mm		
1148 Chemical Room Corridor Area		0.00	sf	0.00	m2		
1149 Chemical Room Overall Slab Dimensions (including Corridor):							
1150 Total Chemical Room Length		42.00	ft	12801.00	mm		
1151 Total Chemical Room Width (for purposes of calculating Excavation)		39.00	ft	11887.20	mm		
1152 Chemical Room Excavation Length		48.00	ft	14630.40	mm		
1153 Chemical Room Excavation Width		45.80	ft	13716.00	mm		
1154 Chemical Room Excavation Depth		2.75	ft	834.25	mm		
1155 Total Chemical Room Area		1636.00	sf	152.18	m2		
1156 Chemical Room Overall Building Dimensions (including Corridor):							
1157 Total Chemical Room Covered Length		42.00	ft	12801.00	mm		
1158 Total Chemical Room Covered Width (for purposes of calculating Excavation)		39.00	ft	11887.20	mm		Assumes corridor is covered
1159 Total Chemical Room Covered Area		1636.00	sf	152.18	m2		
1160 Estimating Calculations for Chemical Room (Dry CIP Chemicals)			Chloric Acid	Trisodium Phosphate	Sodium Tripolyphosphate	Sodium bisulfite/sulfonate	
1161 Logic Tests ("1" = Yes "0" = No):							
1162 Is "Other" Chemical Used for CIP? (1 = Yes, 0 = No)		1	1	1	1	1	
1163 Is "Other" Chemical Used, Which Chemical Does it Replace for CIP? (0 = Replaced Chemical)		1	0	1	1	1	
1164 Is this Chemical Feed System included for CIP?		1	0	1	1	1	
1165 Is this the Method of Delivery "Truck"?		0	0	0	0	0	
1166 Is this the Method of Delivery "Super Sack"?		1	1	1	1	1	

	B	C	D	E	F	G	H	I
1163	Is the Method of Delivery "Bags"?	0	0	0	0	0		
1164	Is Chemical Facility Covered? (1 = Yes, 0 = No)	1	1	1	1	1		
1165	Site Scenario:							
1166	Length of Module through Silos (ft)	0.00	0.00	0.00	0.00	0.00		
1167	Width of Module (ft)	0.00	0.00	0.00	0.00	0.00		
1168	Super Safe Scenario:							
1169	Length of Module (ft)	32.00	24.00	24.00	24.00	24.00		156
1170	Width of Module (ft)	16.00	4.00	8.00	12.00	12.00		16
1171	Bag Scenario:							
1172	Length of Module (ft)	0.00	0.00	0.00	0.00	0.00		
1173	Width of Module (ft)	0.00	0.00	0.00	0.00	0.00		
1174	Length of Selected Module (ft)	32.00	0.00	24.00	24.00	24.00		96
1175	Width of Selected Module (ft)	16.00	0.00	8.00	12.00	12.00		16
1176	Area of Module (SF)	512.00	0.00	192.00	288.00			
1177	Slab and Building Wall							
1178	Slab on Grade Thickness	9.00	in	304.80	mm		Model based on 9"	
1179	Slab on Grade Thickness	0.75	ft	228.60	mm			
1180	Building Wall Thickness	8.00	in	303.38	mm		Model based on 8"	
1181	Building Wall Thickness	0.67	ft	203.20	mm			
1182	Chemical Room Overall Slab and Building Dimensions							
1183	Total Chemical Room Length	60.00	ft	24364.00	mm			
1184	Total Chemical Room Width (for purposes of calculating Excavation)	16.00	ft	4876.00	mm			
1185	Chemical Room Excavation Length	66.00	ft	26212.00	mm			
1186	Chemical Room Excavation Width	22.00	ft	6705.00	mm			
1187	Chemical Room Excavation Depth	2.75	ft	838.20	mm			
1188	Total Chemical Room Area	1280.00	sf	118.92	m ²			
1189	Chemical Room Overall Building Dimensions							
1190	Total Chemical Room Covered Length	60.00	ft	24364.00	mm			
1191	Total Chemical Room Covered Width (for purposes of calculating Excavation)	16.00	ft	4876.00	mm			
1192	Total Chemical Room Covered Area	1280.00	sf	118.92	m ²			
1193	Estimating Calculations for Chemical Room (Liquid CIP Chemicals)							
1194	Sodium Hydroxide							
1195	Hydrochloric Acid							
1196	Sodium EDTA							
1197	Acid X							
1198	Acid Y							
1199	Logic Tests ("1" = Yes, "0" = No):							
1200	Is "Other" Chemical Used for CIP? (1 = Yes, 0 = No)	0	0	0	0	0		
1201	Is "Other" Chemical Used, Which Chemical Does it Replace for CIP? (0 = Replaced	1	0	1	1	1		
1202	Chemical							
1203	Is this Chemical System included for CIP?	1	0	1	0	0		2
1204	Is the Method of Delivery "Tank Truck"?	0	1	1	1	1		
1205	Is Chemical Facility Covered? (1 = Yes, 0 = No)	1	1	1	0	1		4
1206	Number of Bulk Tanks (each)	1	1	1	1	1		
1207	Diameter of Bulk Tank (ft)	9.00	10.00	13.00	12.00	12.00		
1208	Height of Bulk Tank (ft)	0.00	14.00	16.00	11.00	11.00		
1209	Volume of Each Bulk Tank (gallons)	0.00	8225.28	15866.50	9308.29	9308.29		
1210	Bulk Tank Material	FRP	PLS	FRP	FRP	FRP		
1211	Length of Module (Tank Truck) (ft)	0.00	0.00	23.00	0.00	0.00		23
1212	Length of Module (Tote) (ft)	22.00	0.00	0.00	0.00	0.00		22
1213	Width of Module (Tote) (ft)	0.00	0.00	30.00	0.00	0.00		30
1214	Width of Module (Drum) (ft)	16.00	0.00	0.00	0.00	0.00		16
1215	Area of Module (SF)	352.00	0.00	600.00	0.00	0.00		
1216	Number of Bulk Tanks (each)	0.00	0.00	1.00	0.00	0.00		
1217	Diameter of Bulk Tank (ft)	0.00	0.00	13.00	0.00	0.00		
1218	Volume of Each Bulk Tank (gallons)	0.00	0.00	12451.58	0.00	0.00		
1219	Bulk Tank Material	NA	PLS	FRP	FRP	FRP		
1220	Total Number of Metering Pumps (CIP)	1.00	0.00	1.00	0.00	0.00		
1221	Containment Wall Height (Feet)	1.17	0.00	4.73	0.00	0.00		
1222	Slab and Containment Wall							
1223	Slab on Grade Thickness	8.00	in	304.80	mm		Model based on 9"	
1224	Slab on Grade Thickness	0.75	ft	228.60	mm			
1225	Containment Wall Thickness	8.00	in	303.38	mm		Model based on 8"	
1226	Containment Wall Thickness	0.67	ft	203.20	mm			
1227	Chemical Room Corridor							
1228	Chemical Room Corridor Length	45.00	ft	13716.00	mm			
1229	Chemical Room Corridor Width	0.00	ft	0.00	mm			
1230	Chemical Room Corridor Area	0.00	sf	0.00	m ²			
1231	Chemical Room Overall Slab Dimensions (Including Corridor)							
1232	Total Chemical Room Length	45.00	ft	13716.00	mm			
1233	Total Chemical Room Width (for purposes of calculating Excavation)	30.00	ft	9144.00	mm			
1234	Chemical Room Excavation Length	51.00	ft	15544.80	mm			
1235	Chemical Room Excavation Width	36.00	ft	10972.80	mm			
1236	Chemical Room Excavation Depth	2.75	ft	838.20	mm			
1237	Total Chemical Room Area	1350.00	sf	125.42	m ²			
1238	Chemical Room Overall Building Dimensions (Including Corridor)							
1239	Total Chemical Room Covered Length	45.00	ft	13716.00	mm			
1240	Total Chemical Room Covered Width (for purposes of calculating Excavation)	30.00	ft	9144.00	mm			
1241	Total Chemical Room Covered Area	1350.00	sf	125.42	m ²			
1242	COST TABLE FOR TANKS & PUMPS:							
1243	Unit Cost							
1244	Tanks (installed Cost per Gallon)							
1245	FRP	\$	3.32					
1246	Polyethylene (PE)	\$	2.11					
1247	Phenolic Lined Steel (PLS)	\$	6.91					
1248	Chemical Feed Pumps (Cost per Each)	\$	7,991.48					
1249	Estimating Dimensions:							
1250	Value English	Unit (English)	Value Metric	Unit (Metric)	Name	Comment		Red Flags
1251	Cartridge Filters Calculations							
1252	Cartridge Filters Area Dimensions							
1253	Cartridge Filter Row Width	8.23	ft	2.51	m			
1254	Cartridge Filter Row Length	0.00	ft	0.00	m			
1255	Number of Rows of Cartridge Filter Housing	2.00	#					
1256	Intake/Outlet on Same Trench?	Yes	Y/N					
1257	Cartridge Filter Inlet/Outlet Pipe Trench Calculations							
1258	Trench Width	8.00	ft	2.44	m	CFTW		
1259	Trench Length	0.00	ft	0.00	m	CFTL		
1260	Trench Depth	10.50	ft	3.20	m	CFTD	Same as process pipe trench	
1261	Membrane Skids Area Length							
1262	Number of Rows of Membrane Skids	1.00	#					
1263	Number of Membrane Skids per Row	8.00	#					
1264	Membrane Skids Row Width	87.87	ft	29.62	m			
1265	Membrane Skids Row Length	112.00	ft	34.14	m			
1266	CIP System Area							
1267	# of CIP Tanks	2.00	#					
1268	Space for Scissor Lift?	No	Y/N					
1269	Common Access Platform	Yes	Y/N					
1270	Width of Common Access Platform	6.00	ft	1.83	m			
1271	# of CIP Pumps	2.00	#					
1272	# of CIP Cartridge Filter Housing	1.00	#					
1273	Building Areas							
1274	Membrane Area Length	112.00	ft	34.14	m	MAJ		
1275	Membrane Area Width	87.87	ft	29.62	m	MAW		
1276	Membrane Area	758.87	sf	704.08	m ²			
1277	Cartridge Filters Area Length	0.00	ft	0.00	m	CFAL		
1278	Cartridge Filters Area Width	24.48	ft	7.45	m	CFAW		
1279	Cartridge Filters Area	0.00	sf	0.00	m ²			
1280	Electrical Room Length	44.64	ft	13.81	m	TERL		
1281	Electrical Room Width	20.08	ft	6.12	m	TERW		
1282	Electrical Room Area	890.52	sf	83.29	m ²			
1283	CIP Area Length	40.10	ft	12.22	m	CIPAL		
1284	CIP Area Width	42.00	ft	12.80	m	CIPAW		
1285	CIP Area	1852.25	sf	172.08	m ²			

	B	C	D	E	F	G	H	I	
1228									
1229	Pretreatment Liquid Chemicals Area	1638.00	sf	152.18	m2				
1230									
1231	CIP Liquid Chemicals Area	1350.00	sf	125.42	m2				
1232									
1233	CIP Dry Chemicals Area	1280.00	sf	118.92	m2				
1234									
1235	Chemical Neutralization System Area	0.00	sf	0.00	m2				
1236									
1237	Flushing System and Permeate Transfer Area	468.00	sf	43.48	m2				
1238									
1239	Pilot Stid Area	981.00	sf	89.28	m2				
1240									
1241	Other Areas Length	39.64	ft	12082.58	mm	CAL			
1242	Other Areas Width	32.38	ft	9663.54	mm	CAW			
1243	Other Areas Area	1282.81	sf	119.18	m2				
1244									
1245	Total Building Area	17307.25	sf	1607.90	m2				
1246									
1247	Slab Areas								
1248	Membrane Building Area	7942.00	sf	737.84	m2				
1249									
1250	CIP System Area	1852.28	sf	172.08	m2				
1251									
1252	Cartridge Filter Area	52.92	sf	4.92	m2				
1253									
1254	Electrical Room Area	1020.97	sf	95.69	m2				
1255									
1256	Pretreatment Liquid Chemicals Area Length	42.00	ft	12801.60	mm	PLCAL			
1257	Pretreatment Liquid Chemicals Area Width	39.00	ft	11887.20	mm	PLCAW			
1258	Pretreatment Liquid Chemicals Area	1638.00	sf	152.18	m2				
1259									
1260	CIP Liquid Chemicals Area Length	45.00	ft	13716.00	mm	CLCAL			
1261	CIP Liquid Chemicals Area Width	30.00	ft	9144.00	mm	CLCAW			
1262	CIP Liquid Chemicals Area	1350.00	sf	125.42	m2				
1263									
1264	CIP Dry Chemicals Area Length	80.00	ft	24384.00	mm	CDCAL			
1265	CIP Dry Chemicals Area Width	18.00	ft	4878.60	mm	CDCAW			
1266	CIP Dry Chemicals Area	1280.00	sf	118.92	m2				
1267									
1268	Chemical Neutralization System Area Length	0.60	ft	0.00	mm	CNAL			
1269	Chemical Neutralization System Area Width	0.00	ft	0.00	mm	CNAW			
1270	Chemical Neutralization System Area	0.00	sf	0.00	m2				
1271									
1272	Flushing System and Permeate Transfer Area Length	18.00	ft	5498.40	mm	FSPTAL			
1273	Flushing System and Permeate Transfer Area Width	28.00	ft	7974.80	mm	FSPTAW			
1274	Flushing System and Permeate Transfer Area	468.00	sf	43.48	m2				
1275									
1276	Pilot Stid Area Length	31.00	ft	9448.80	mm	PSAL			
1277	Pilot Stid Area Width	31.00	ft	9448.80	mm	PSAW			
1278	Pilot Stid Area	981.00	sf	89.28	m2				
1279									
1280	Total Slab Area	18521.22	sf	1534.87	m2				
1281									
1282	Slab on Grade Areas and Excavation Calculations								
1283	Membrane Area Slab on Grade Length	116.00	ft	35.36	m				
1284	Membrane Area Slab on Grade Width	71.67	ft	21.84	m				
1285	Membrane Area Slab on Grade Area	8313.33	sf	772.33	m2				
1286									
1287	CIP System Area Slab on Grade Length	44.10	ft	13.44	m				
1288	CIP System Area Slab on Grade Width	46.00	ft	14.02	m				
1289	CIP System Building Slab on Grade Area	2028.45	sf	188.45	m2				
1290									
1291	Cartridge Filter Area Slab on Grade Length	4.00	ft	1.22	m				
1292	Cartridge Filter Area Slab on Grade Width	28.48	ft	8.67	m				
1293	Cartridge Filter Building Slab on Grade Area	113.83	sf	10.58	m2				
1294									
1295	Electrical Room Slab on Grade Length	48.84	ft	14.83	m				
1296	Electrical Room Slab on Grade Width	24.08	ft	7.34	m				
1297	Electrical Room Slab on Grade Area	1171.41	sf	108.83	m2				
1298									
1299	Pretreatment Liquid Chemicals Area Slab on Grade Length	46.00	ft	14.02	m				
1300	Pretreatment Liquid Chemicals Area Slab on Grade Width	43.00	ft	13.11	m				
1301	Pretreatment Liquid Chemicals Area Slab on Grade Area	1978.00	sf	183.78	m2				
1302									
1303	CIP Liquid Chemicals Area Slab on Grade Length	49.00	ft	14.94	m				
1304	CIP Liquid Chemicals Area Slab on Grade Width	34.00	ft	10.38	m				
1305	CIP Liquid Chemicals Area Slab on Grade Area	1656.00	sf	154.78	m2				
1306									
1307	CIP Dry Chemicals Area Slab on Grade Length	64.00	ft	25.60	m				
1308	CIP Dry Chemicals Area Slab on Grade Width	20.00	ft	6.10	m				
1309	CIP Dry Chemicals Area Slab on Grade Area	1650.00	sf	158.68	m2				
1310									
1311	Chemical Neutralization System Area Slab on Grade Length	4.00	ft	1.22	m				
1312	Chemical Neutralization System Area Slab on Grade Width	4.00	ft	1.22	m				
1313	Chemical Neutralization System Area Slab on Grade Area	16.00	sf	1.49	m2				
1314									
1315	Flushing System and Permeate Transfer Area Slab on Grade Length	22.00	ft	6.71	m				
1316	Flushing System and Permeate Transfer Area Slab on Grade Width	30.00	ft	9.14	m				
1317	Flushing System and Permeate Transfer Area Slab on Grade Area	650.00	sf	61.32	m2				
1318									
1319	Pilot Stid Area Slab on Grade Length	35.00	ft	10.67	m				
1320	Pilot Stid Area Slab on Grade Width	35.00	ft	10.67	m				
1321	Pilot Stid Area Slab on Grade Area	1225.00	sf	113.61	m2				
1322									
1323	Other Areas Slab on Grade Length	43.64	ft	13.30	m				
1324	Other Areas Slab on Grade Width	36.36	ft	11.08	m				
1325	Other Areas Slab on Grade Area	1586.82	sf	147.42	m2				
1326									
1327	Total Slab on Grade Area	18410.40	sf	1710.38	m2				
1328									
1329	Input Slab on Grade Thickness	12.00	in	364.88	mm			Model based on 12"	
1330	Slab on Grade Thickness	1.00	ft	304.80	mm				
1331	Input Overexcavation Depth	1.00	ft	364.88	mm				
1332									
1333	Process Building Excavation Depth	2.00	ft	609.60	mm				
1334	Electrical Room Excavation Depth	2.00	ft	609.60	mm				
1335	Input Trench Excavation Depth	10.50	ft	3200.40	mm				
1336	Input Cutback Slope	1.00	ft					Default is 1.5:1	
1337	Input Equipment Pad Thickness	1.00	ft	364.88	mm				
1338	Input Chemical Bulk Storage Pad Thickness	3.00	ft	914.48	mm				
1339									
1340	Pipe Trenches.								
1341	Membrane Pipe Trench:								
1342	Trench Length	112.00	ft	34137.80	mm				
1343	Width	13.00	ft	3952.40	mm			TW2	
1344	Depth	8.50	ft	2590.80	mm			TD2	
1345	Input Trench Wall Thickness	12.00	in	364.88	mm			Model based on 12"	
1346	Trench Wall Thickness	1.00	ft	304.80	mm				
1347	Input Building Wall Thickness	12.00	in	364.88	mm			Model based on 12"	
1348	Building Wall Thickness	1.00	ft	304.80	mm				
1349									
1350									
1351									
1352									
1353									
1354									
1355									
1356									
1357									
1358									
1359									
1360									
1361									
1362									
1363									
1364									
1365									
1366									
1367									
1368									
1369									
1370									
1371									
1372									
1373									
1374									
1375									
1376									
1377									
1378									
1379									
1380									
1381									
1382									
1383									
1384									
1385									
1386									
1387									
1388									
1389									
1390									
1391									
1392									
1393									
1394									
1395									
1396									
1397									
1398									
1399									
1400									
1410		Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over Write
1411									
1412									
1413		SITEWORK							
1414		Membrane Area:							

B	C	D	E	F	G	H	I
1414 Excavation	808.06	CY	484.90	m3	\$4.35	\$3,860	
1415 Imported Structural Backfill	504.10	CY	385.41	m3	\$48.10	\$24,247	
1416 Native Backfill	38.81	CY	29.68	m3	\$7.89	\$303	
1417 Haul Excess	580.25	CY	425.22	m3	\$7.89	\$4,443	
1418 Pipe Trench Area:							
1419 Excavation	1602.95	CY	1225.55	m3	\$8.35	\$10,170	
1420 Imported Structural Backfill	124.44	CY	95.14	m3	\$48.10	\$5,988	
1421 Native Backfill	777.88	CY	594.73	m3	\$7.89	\$6,071	
1422 Haul Excess	825.06	CY	630.82	m3	\$7.89	\$6,439	
1423 CIP System Area:							
1424 Excavation	190.71	CY	145.81	m3	\$4.35	\$1,211	
1425 Imported Structural Backfill	150.26	CY	114.88	m3	\$48.10	\$7,227	
1426 Native Backfill	20.02	CY	15.31	m3	\$7.89	\$156	
1427 Haul Excess	179.06	CY	130.50	m3	\$7.89	\$1,332	
1428 Cartridge Filter Area:							
1429 Excavation	17.52	CY	13.40	m3	\$8.35	\$111	
1430 Imported Structural Backfill	8.43	CY	6.45	m3	\$48.10	\$460	
1431 Native Backfill	7.21	CY	5.51	m3	\$7.89	\$56	
1432 Haul Excess	10.31	CY	7.88	m3	\$7.89	\$80	
1433 Electrical Room:							
1434 Excavation	115.28	CY	88.14	m3	\$4.35	\$732	
1435 Imported Structural Backfill	86.77	CY	66.34	m3	\$48.10	\$4,174	
1436 Native Backfill	16.16	CY	12.38	m3	\$7.89	\$126	
1437 Haul Excess	99.12	CY	75.79	m3	\$7.89	\$774	
1438 Pretreatment Liquid Chemicals Area:							
1439 Excavation	180.25	CY	142.40	m3	\$8.35	\$1,182	
1440 Imported Structural Backfill	149.52	CY	112.02	m3	\$48.10	\$7,047	
1441 Native Backfill	19.78	CY	15.12	m3	\$7.89	\$154	
1442 Haul Excess	189.47	CY	127.28	m3	\$7.89	\$1,299	
1443 CIP Liquid Chemicals Area							
1444 Excavation	158.87	CY	121.47	m3	\$4.35	\$1,000	
1445 Imported Structural Backfill	123.41	CY	94.35	m3	\$48.10	\$5,936	
1446 Native Backfill	18.44	CY	14.10	m3	\$7.89	\$144	
1447 Haul Excess	140.43	CY	107.37	m3	\$7.89	\$1,096	
1448 CIP Dry Chemicals Area							
1449 Excavation	165.28	CY	126.35	m3	\$4.35	\$1,040	
1450 Imported Structural Backfill	124.44	CY	95.14	m3	\$48.10	\$5,966	
1451 Native Backfill	23.11	CY	17.67	m3	\$7.89	\$180	
1452 Haul Excess	142.18	CY	108.68	m3	\$7.89	\$1,108	
1453 Chemical Neutralization System Area:							
1454 Excavation	3.32	CY	2.54	m3	\$8.35	\$21	
1455 Imported Structural Backfill	1.19	CY	0.91	m3	\$48.10	\$57	
1456 Native Backfill	1.78	CY	1.36	m3	\$7.89	\$14	
1457 Haul Excess	1.54	CY	1.18	m3	\$7.89	\$12	
1458 Flushing System and Permeate Transfer Area:							
1459 Excavation	67.70	CY	51.76	m3	\$8.35	\$430	
1460 Imported Structural Backfill	48.88	CY	37.38	m3	\$48.10	\$2,362	
1461 Native Backfill	11.56	CY	8.83	m3	\$7.89	\$80	
1462 Haul Excess	56.14	CY	42.92	m3	\$7.89	\$434	
1463 Pile Slid Area							
1464 Excavation	119.05	CY	81.02	m3	\$8.35	\$758	
1465 Imported Structural Backfill	90.74	CY	69.38	m3	\$48.10	\$4,365	
1466 Native Backfill	15.56	CY	11.89	m3	\$7.89	\$121	
1467 Haul Excess	103.50	CY	79.13	m3	\$7.89	\$406	
1468 Other Areas:							
1469 Excavation	151.56	CY	115.87	m3	\$8.35	\$1,062	
1470 Imported Structural Backfill	117.54	CY	89.87	m3	\$48.10	\$5,654	
1471 Native Backfill	17.78	CY	13.59	m3	\$7.89	\$130	
1472 Haul Excess	133.78	CY	102.28	m3	\$7.89	\$1,044	
1473 Allowance for Misc Items	5%					\$121,361.87	\$4,686
1474 Subtotal							\$127,430
1475 CONCRETE							
1476 Slab on Grade:							
1477 Process Building	681.87	CY	521.32	m3	\$358.31	\$242,954	
1478 Trench Walls:							
1479 Cartridge Filters and Membrane Pipe Trench	70.52	CY	53.92	m3	\$704.87	\$49,543	
1480 Equipment Pads:							
1481 Pumps:							
1482 High Pressure Membrane Feed Pumps (Active)	1.00	CY	0.77	m3	\$358.31	\$357	
1483 High Pressure Membrane Feed Pumps (Standby)	0.29	CY	0.15	m3	\$358.31	\$77	
1484 Interstage Booster Pump (Active)	1.44	CY	1.10	m3	\$358.31	\$315	
1485 Interstage Booster Pump (Standby)	0.29	CY	0.22	m3	\$358.31	\$63	
1486 Flushing Pumps (Active)	0.05	CY	0.04	m3	\$358.31	\$17	
1487 Flushing Pumps (Standby)	0.05	CY	0.04	m3	\$358.31	\$17	
1488 Permeate Transfer Pumps (Active)	0.00	CY	0.00	m3	\$358.31	\$0	
1489 Permeate Transfer Pumps (Standby)	0.00	CY	0.00	m3	\$358.31	\$0	
1490 Cleaning Solution Recirculation Pump (Active)	0.36	CY	0.28	m3	\$358.31	\$126	
1491 Cleaning Solution Recirculation Pump (Standby)	0.36	CY	0.28	m3	\$358.31	\$126	
1492 Dry Chemicals Transfer Pump (Active)	0.00	CY	0.00	m3	\$358.31	\$0	
1493 Spent Chemicals Neutralization Pumps (Active)	2.16	CY	1.66	m3	\$358.31	\$771	
1494 Spent Chemicals Neutralization Pumps (Standby)	1.08	CY	0.83	m3	\$358.31	\$388	
1495 Pretreatment Chemical Metering Pumps:							
1496 Sulfuric Acid Active Metering Pump	1.00	CY	0.76	m3	\$358.31	\$356	
1497 Sulfuric Acid Standby Metering Pump	1.00	CY	0.76	m3	\$358.31	\$356	
1498 Hydrochloric Acid Active Metering Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1499 Scale Inhibitor Active Metering Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1500 Scale Inhibitor Standby Metering Pump	1.00	CY	0.76	m3	\$358.31	\$356	
1501 Other Chemical 1 Active Metering Pump	1.00	CY	0.76	m3	\$358.31	\$356	
1502 Other Chemical 1 Standby Metering Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1503 Other Chemical 2 Active Metering Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1504 Other Chemical 2 Standby Metering Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1505 Other Chemical 2 Standby Metering Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1506 Liquid CIP Chemical Transfer Pumps:							
1507 Sodium Hydroxide Active Transfer Pump	0.50	CY	0.38	m3	\$358.31	\$178	
1508 Sodium Hydroxide Standby Transfer Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1509 Hydrochloric Acid Active Transfer Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1510 Hydrochloric Acid Standby Transfer Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1511 Sodium EDTA Active Transfer Pump	0.50	CY	0.38	m3	\$358.31	\$178	
1512 Sodium EDTA Standby Transfer Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1513 Other Chemical 3 Active Transfer Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1514 Other Chemical 3 Standby Transfer Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1515 Other Chemical 4 Active Transfer Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1516 Other Chemical 4 Standby Transfer Pump	0.00	CY	0.00	m3	\$358.31	\$0	
1517 Tanks:							
1518 Flushing Tanks	4.19	CY	3.20	m3	\$358.31	\$1,462	
1519 Cleaning Solution Tanks	21.12	CY	16.15	m3	\$358.31	\$7,525	
1520 Dry Chemicals Solution Preparation Tanks	0.00	CY	0.00	m3	\$358.31	\$0	
1521 Neutralization Tanks	16.81	CY	12.65	m3	\$358.31	\$5,991	
1522 Pretreatment Chemicals Bulk Storage Tanks							
1523 Sulfuric Acid	17.10	CY	13.08	m3	\$358.31	\$5,694	
1524 Hydrochloric Acid	0.00	CY	0.00	m3	\$358.31	\$0	
1525 Scale Inhibitor	8.73	CY	6.87	m3	\$358.31	\$3,109	
1526 Other Chemical 1	0.00	CY	0.00	m3	\$358.31	\$0	
1527 Other Chemical 2	0.00	CY	0.00	m3	\$358.31	\$0	
1528 Liquid CIP Chemicals Bulk Storage Tanks							
1529 Sodium Hydroxide	0.00	CY	0.00	m3	\$358.31	\$0	
1530 Hydrochloric Acid	0.00	CY	0.00	m3	\$358.31	\$0	
1531 Sodium EDTA	14.75	CY	11.28	m3	\$358.31	\$5,225	
1532 Other Chemical 3	0.00	CY	0.00	m3	\$358.31	\$0	
1533 Other Chemical 4	0.00	CY	0.00	m3	\$358.31	\$0	
1534 Pretreatment Chemicals Containment Area Walls:							
1535 Sulfuric Acid	6.29	CY	4.81	m3	\$587.50	\$31,506	
1536 Hydrochloric Acid	0.00	CY	0.00	m3	\$587.50	\$0	
1537 Scale Inhibitor	9.04	CY	6.91	m3	\$587.50	\$5,041	
1538 Other Chemical 1	0.00	CY	0.00	m3	\$587.50	\$0	
1539 Other Chemical 2	0.00	CY	0.00	m3	\$587.50	\$0	
1540 Liquid CIP Chemicals Containment Area Walls							

	B	C	D	E	F	G	H	I
1542	Sodium Hydroxide	2.20	CY	1.68	m3	\$557.50	\$1,275	
1543	Hydrochloric Acid	0.00	CY	0.00	m3	\$557.50	\$0	
1544	Sodium EDTA	12.37	CY	9.48	m3	\$557.50	\$6,809	
1545	Other Chemical 3	0.00	CY	0.00	m3	\$557.50	\$0	
1546	Other Chemical 4	0.00	CY	0.00	m3	\$557.50	\$0	
1547	Alluvence for Misc Items	5%				\$343,014.32	\$17,151	
1548	Subtotal						\$360,185	
1549								
1550	MASONRY							
1551	CMU Building Over Membrane and Other Covered Areas	17367.25	SF	1607.00	m3	\$168.00	\$2,701.37	
1552	Subtotal	17367.25	SF	1607.00	m3		\$2,701.37	
1553								
1554	METALS							
1555	Grating Over Pipe Trenches							
1556	Cartridge Filter and Membrane Pipe Trench	1458.00	SF	135.27	m3	\$45.86	\$124,881	
1557	Metal Stairways							
1558	Pretreatment and Liquid CIP Chemicals	8.00	EA			\$1,471.00	\$14,884	
1559	Alluvence for Misc Items	10%				\$130,975.43	\$13,388	
1560	Subtotal						\$153,973	
1561								
1562	DOORS & WINDOWS							
1563	Roll-Up Doors (14' wide)	7.00	EA			\$3,488.16	\$24,400	
1564	Single Entry Doors (4' wide)	3.00	EA			\$843.16	\$2,948	
1565	Double Entry Doors (6' wide)	1.00	EA			\$1,474.76	\$1,475	
1566	Alluvence for Misc Items	10%				\$28,827.27	\$2,883	
1567	Subtotal						\$31,710	
1568								
1569	EQUIPMENT							
1570	Equipment Purchase Price (Installation Cost is NOT Included):							
1571	Reverse Osmosis Train:							
1572	Skids & Manifold Piping	6.00	LS			\$12,450.00	\$2,114,816	Equipment Purchase Price:
1573	Pressure Vessels (for 18 inch membranes)	36.00	EA			\$16,012.00	\$368,264	
1574	Membrane Elements (18 inches in diameter)	288.00	EA			\$3,608.30	\$1,036,038	
1575	Cartridge Filters (0 gpm)	0.00	EA			\$1,154.63	\$0	
1576	Bypass Blend Cartridge Filters (0 gpm)	0.00	EA			\$1,214.00	\$0	
1577	CIP Cartridge Filters (900 gpm)	1.00	EA			\$59,721.29	\$59,724	
1578	Pumps:							
1579	High Pressure Membrane Feed Pumps (Active) (348 hp each)	5.00	EA			\$116,832.56	\$883,176	
1580	High Pressure Membrane Feed Pumps (Standby) (348 hp each)	1.00	EA			\$116,832.00	\$116,832	
1581	Interstage Booster Pumps (Active) (31 hp each)	5.00	EA			\$28,816.82	\$134,083	
1582	Interstage Booster Pumps (Standby) (31 hp each)	1.00	EA			\$28,816.82	\$28,817	
1583	Flushline Pumps (Active) (10 hp each)	1.00	EA			\$48,449.50	\$480,450	
1584	Flushline Pumps (Standby) (10 hp each)	1.00	EA			\$48,449.50	\$48,450	
1585	Permeate Transfer Pumps (Active) (0 hp each)	0.00	EA			\$0.00	\$0	
1586	Permeate Transfer Pumps (Standby) (0 hp each)	0.00	EA			\$0.00	\$0	
1587	Cleaning Solution Recirculation Pump (Active) (80 hp each)	1.00	EA			\$33,212.01	\$33,212	
1588	Cleaning Solution Recirculation Pump (Standby) (80 hp each)	1.00	EA			\$33,212.01	\$33,212	
1589	Dry Chemical Transfer Pump (Active) (0 hp each)	0.00	EA			\$28,788.27	\$0	
1590	Dry Chemical Transfer Pump (Standby) (50 hp each)	2.00	EA			\$0.00	\$0	
1591	Smart Chemical Neutralization Pump (Standby) (50 hp each)	1.00	EA			\$0.00	\$0	
1592	Pretreatment Chemical Metering Pump:							
1593	Sulfuric Acid Active Metering Pump (1 hp each)	1.00	EA			\$7,991.45	\$7,991	
1594	Sulfuric Acid Standby Metering Pump (1 hp each)	1.00	EA			\$7,991.45	\$7,991	
1595	Hydrochloric Acid Active Metering Pump (1 hp each)	0.00	EA			\$7,991.45	\$0	
1596	Hydrochloric Acid Standby Metering Pump (1 hp each)	0.00	EA			\$7,991.45	\$0	
1597	Scale Inhibitor Active Metering Pump (1 hp each)	1.00	EA			\$7,991.45	\$7,991	
1598	Scale Inhibitor Standby Metering Pump (1 hp each)	1.00	EA			\$7,991.45	\$7,991	
1599	Other Chemical 1 Active Metering Pump (0 hp each)	0.00	EA			\$7,991.45	\$0	
1600	Other Chemical 1 Standby Metering Pump (0 hp each)	0.00	EA			\$7,991.45	\$0	
1601	Other Chemical 2 Active Metering Pump (0 hp each)	0.00	EA			\$7,991.45	\$0	
1602	Other Chemical 2 Standby Metering Pump (0 hp each)	0.00	EA			\$7,991.45	\$0	
1603	Liquid Chemical Transfer Pump:							
1604	Hydrochloric Acid Transfer Pump (5 hp each)	1.00	EA			\$26,768.27	\$26,768	
1605	Sodium Hydroxide Transfer Pump (5 hp each)	0.00	EA			\$26,768.27	\$0	
1606	Hydrochloric Acid Transfer Pump (0 hp each)	0.00	EA			\$26,768.27	\$0	
1607	Hydrochloric Acid Standby Transfer Pump (0 hp each)	0.00	EA			\$26,768.27	\$0	
1608	Sodium EDTA Active Transfer Pump (24 hp each)	1.00	EA			\$16,758.27	\$216,768	
1609	Sodium EDTA Standby Transfer Pump (0 hp each)	0.00	EA			\$16,758.27	\$0	
1610	Other Chemical 3 Active Transfer Pump (0 hp each)	0.00	EA			\$16,758.27	\$0	
1611	Other Chemical 3 Standby Transfer Pump (0 hp each)	0.00	EA			\$16,758.27	\$0	
1612	Other Chemical 4 Active Transfer Pump (0 hp each)	0.00	EA			\$16,758.27	\$0	
1613	Other Chemical 4 Standby Transfer Pump (0 hp each)	0.00	EA			\$16,758.27	\$0	
1614	Energy Recovery Devices (Turbocharger):							
1615	Turbocharger for Interstage Pressure Boost (Active) (0 hp each)	0.00	EA			\$12,297.43	\$0	
1616	Turbocharger for Interstage Pressure Boost (Standby) (0 hp each)	0.00	EA			\$12,297.43	\$0	
1617	Tanks:							
1618	Flushing Tanks (12902 gallons each)	1.00	EA			\$33,064.77	\$33,065	
1619	Cleaning Solution Tanks (10504 gallons each)	2.00	EA			\$26,763.87	\$53,526	
1620	Dry Chemicals Solution Preparation Tanks (0 gallons each)	0.00	EA			\$14,731.16	\$0	
1621	Neutralization Tanks (32921 gallons each)	2.00	EA			\$41,502.00	\$123,120	
1622	Pretreatment Chemicals Bulk Storage Tanks							
1623	Sulfuric Acid (5758 gallons each)	1.00	EA			\$34,847.33	\$34,848	
1624	Hydrochloric Acid (8223 gallons each)	0.00	EA			\$48,410.48	\$0	
1625	Scale Inhibitor (9400 gallons each)	1.00	EA			\$17,783.87	\$17,783	
1626	Other Chemical 1 (9400 gallons each)	0.00	EA			\$17,783.87	\$0	
1627	Other Chemical 2 (9400 gallons each)	0.00	EA			\$17,783.87	\$0	
1628	Liquid CIP Chemicals Bulk Storage Silos							
1629	Sodium Hydroxide (0 gallons each)	0.00	EA			\$0.00	\$0	
1630	Hydrochloric Acid (8223 gallons each)	0.00	EA			\$48,410.48	\$0	
1631	Sodium EDTA (15887 gallons each)	1.00	EA			\$28,437.32	\$28,437	
1632	Other Chemical 3 (30308 gallons each)	0.00	EA			\$17,608.17	\$0	
1633	Other Chemical 4 (30308 gallons each)	0.00	EA			\$17,608.17	\$0	
1634	Dry CIP Chemicals Bulk Storage Silos							
1635	Citric Acid (0 cf each)	0.00	EA			\$0.00	\$0	
1636	Trisodium Phosphate (0 cf each)	0.00	EA			\$0.00	\$0	
1637	Sodium Tripolyphosphate (0 cf each)	0.00	EA			\$0.00	\$0	
1638	Other Chemical 5 (0 cf each)	0.00	EA			\$0.00	\$0	
1639	Meters:							
1640	Static Meters	0.00	EA			\$0.00	\$0	
1641	CIP Tank Meters (13 hp each)	2.00	EA			\$32,105.13	\$78,211	
1642	Dry Chemicals Meters (0 hp each)	0.00	EA			\$0.00	\$0	
1643	Heaters & Chillers:							
1644	CIP Heaters (3MA kw per each)	4.00	EA			\$147,210.42	\$417,124	
1645	Dry Chemicals Heater (0 kw per each)	0.00	EA			\$0.00	\$0	
1646	CIP Chillers (29012 BTUH each)	0.00	BTUH			\$6,000	\$0	
1647	Equipment Installation Factor:							Equipment Installation Factor Percentage:
1648	Equipment Installation Factor (Default = 20% * Equipment Purchase Price)	20%						
1649	Alluvence for Misc Items	2%						
1650	Subtotal							\$7,231,221
1651								
1652								
1653	M/C:							
1654	Instruments							
1655	Flow Elements	20.00	EA			\$8,564.58	\$171,892	
1656	Isolation Valve Actuators (Electric)	64.00	EA			\$8,007.16	\$504,602	
1657	Isolation Valve Actuators (Pneumatic)	0.00	EA			\$8,007.16	\$0	
1658	Conductivity Meters	18.00	EA			\$0.00	\$0	
1659	Turbidimeters	6.00	EA			\$0.00	\$0	
1660	Temperature Elements	6.00	EA			\$0.00	\$0	
1661	pH Meters	8.00	EA			\$0.00	\$0	
1662	ORP Meters	12.00	EA			\$8,448.21	\$101,343	
1663	Pressure Indicator Transmitters	12.00	EA			\$7,023.77	\$26,743	
1664	Pressure Elements	38.00	EA			\$8,021.98	\$40,116	
1665	Level Indicator Transmitters	5.00	EA			\$9,217.43	\$2,833	
1666	Chemical Tank Radar Level Transmitters	3.00	EA			\$19,774.71	\$2,933	
1667	Chemical Tank Beacon	3.00	EA			\$1,303.31	\$1,304	
1668	Drum or Tote Weigh Scale	0.00	EA			\$1,303.31	\$0	
1669	Metering Pump Discharge Pressure Switch	2.00	EA			\$1,303.31	\$1,304	
1670	Chemical Magnehelic	2.00	EA			2,651.70	\$1,304	
1671	Sump Pump Float Switch	6.00	EA			1727.41	\$1,056	

		C	D	E	F	G	H	I
177	Eyewash Station	8.00	EA			\$177.61	\$7,821	
177	Number of Analog I/O Counts	182.00	EA			\$247.87	\$45,075	
177	Number of Digital I/O Counts	504.00	EA			\$58.46	\$29,564	
177	Number of Local Panels	6.00	EA				\$0	
177	Number of PLC's	2.00	EA			\$1,015.11	\$29,070	
177	I2C Conduit Wire	41882.33	LF	12790.84	m	\$11.30	\$473.105	
177	Allowance for Misc Items	2%				\$1,430,556.06	\$28,731	
177	Subtotal						\$1,465,288	
178	CONVEYING SYSTEMS							
178	CIP System Monorail Hoist for Superseats	1.00	EA			\$2,863.06	\$3,863	
178	CIP System Hoist Rail	38.00	LF	11.58	m	\$28.02	\$1,483	
178	Bridge Crane	1.00	EA			\$88,120.69	\$88,121	
178	Bridge Crane Rail	112.00	LF	34.14	m	\$34.34	\$3,846	
178	Allowance for Misc Items	5%				\$75,312.88	\$3,706	
178	Subtotal						\$79,079	
179	MECHANICAL							
179	Pipe:							
179	Cartridge Filtration Influent Header (CFIH, 0 inch, FRP)	0.00	LF	0.00	m	\$0.00	\$0	
179	Cartridge Filtration Influent Lateral (CFEL, 0 inch, FRP)	0.00	LF	0.00	m	\$0.00	\$0	
179	Cartridge Filtration Effluent Lateral (CFEL, 0 inch, FRP)	0.00	LF	0.00	m	\$0.00	\$0	
179	Cartridge Filtration Effluent Header (CFEH, 0 inch, FRP)	0.00	LF	0.00	m	\$0.00	\$0	
179	Reverse Osmosis Influent Dump Header (RODHD, 30 inch, FRP)	13.00	LF	3.08	m	\$378.14	\$4,918	
179	Reverse Osmosis Influent Header (ROH4, 30 inch, FRP)	114.00	LF	34.75	m	\$378.14	\$43,198	
179	High Pressure Pump Suction (HPPS, 10 inch, FRP)	141.50	LF	43.13	m	\$121.78	\$17,229	
179	High Pressure Pump Discharge (HPPD, 10 inch, Duplex SST)	18.00	LF	5.49	m	\$171.38	\$12,407	
179	Low Pressure Brine Outlet (ERD Discharge) (LPBRO, 6 inch, Duplex SST)	104.00	LF	31.70	m	\$403.87	\$41,982	
179	Reverse Osmosis Influent (1st Stage) (ROISL1, 12 inch, Duplex SST)	38.00	LF	10.97	m	\$186.74	\$31,200	
179	Reverse Osmosis Influent (2nd Stage) (ROISL2, 8 inch, Duplex SST)	18.00	LF	5.49	m	\$258.03	\$10,544	
179	Reverse Osmosis Influent (3rd Stage) (ROISL3, 8 inch, Duplex SST)	18.00	LF	0.00	m	\$159.49	\$0	
179	Reverse Osmosis Influent Sild Sub Lateral (1st Stage) (ROISL1, 12 inch, Duplex SST)	97.98	LF	29.86	m	\$0.00	\$0	
179	Reverse Osmosis Influent Sild Sub Lateral (2nd Stage) (ROISL2, 8 inch, Duplex SST)	87.68	LF	29.86	m	\$0.00	\$0	
179	Reverse Osmosis Influent Sild Sub Lateral (3rd Stage) (ROISL3, 8 inch, Duplex SST)	0.00	LF	0.00	m	\$0.00	\$0	
180	Brine Sild Sub Lateral (1st Stage) (BSL1, 10 inch, Duplex SST)	97.98	LF	29.86	m	\$0.00	\$0	
180	Brine Sild Sub Lateral (2nd Stage) (BSL2, 8 inch, Duplex SST)	97.98	LF	29.86	m	\$0.00	\$0	
180	Brine Sild Sub Lateral (3rd Stage) (BSL3, 8 inch, Duplex SST)	0.00	LF	0.00	m	\$0.00	\$0	
180	Brine Lateral (1st Stage) (BL1, 10 inch, Duplex SST)	54.00	LF	16.48	m	\$712.38	\$38,469	
180	Brine Lateral (2nd Stage) (BL2, 8 inch, Duplex SST)	410.96	LF	125.27	m	\$559.03	\$229,334	
180	Brine Lateral (3rd Stage) (BL3, 8 inch, Duplex SST)	0.00	LF	0.00	m	(\$59.40)	\$0	
180	Brine Header (BH, 16 inch, Duplex SST)	102.00	LF	31.00	m	\$1,179.48	\$119,806	
180	Permeate Lateral (1st Stage) (PL1, 10 inch, FRP)	339.23	LF	103.40	m	\$121.76	\$41,304	
180	Permeate Lateral (2nd Stage) (PL2, 8 inch, FRP)	13.50	LF	4.11	m	\$70.48	\$852	
180	Permeate Lateral (3rd Stage) (PL3, 8 inch, FRP)	0.00	LF	0.00	m	(\$8.43)	\$0	
180	Permeate Header to Flash Tank (PHFT, 24 inch, FRP)	202.15	LF	61.81	m	\$201.23	\$60,892	
180	Cleaning Solution Pump Suction Header (CSPSH, 10 inch, FRP)	4.00	LF	1.22	m	\$121.76	\$487	
180	Cleaning Solution Pump Suction Lateral (CSPSL, 10 inch, FRP)	4.00	LF	1.22	m	\$121.76	\$487	
180	Cleaning Solution Pump Discharge Lateral (CSPDL, 10 inch, FRP)	5.35	LF	1.63	m	\$121.76	\$852	
180	Cleaning Solution Pump Discharge Header (CSPDH, 10 inch, FRP)	11.34	LF	3.46	m	\$121.76	\$1,381	
180	Cleaning Solution Pump Recycle (CSPR, 10 inch, FRP)	20.90	LF	6.37	m	\$121.76	\$2,545	
180	Cleaning Solution Cartridge Filtration Influent Lateral (CSCFL, 10 inch, FRP)	4.00	LF	1.22	m	\$121.76	\$487	
180	Cleaning Solution Cartridge Filtration Effluent Lateral (CSCFL, 10 inch, FRP)	4.00	LF	1.22	m	\$121.76	\$487	
180	Cleaning Solution Supply Header (CSSH, 10 inch, FRP)	107.75	LF	32.84	m	\$121.76	\$13,120	
180	Cleaning Solution Supply Lateral (CSSL, 10 inch, FRP)	28.50	LF	7.77	m	\$121.76	\$3,105	
180	Brine Cleaning Solution Return Header (BCSRH, 10 inch, FRP)	132.80	LF	40.42	m	\$121.76	\$10,145	
180	Brine Cleaning Solution Return Lateral (BCSRL, 10 inch, FRP)	47.40	LF	14.45	m	\$121.76	\$5,772	
180	Permeate Cleaning Solution Return Header (PCSRH, 3 inch, FRP)	132.80	LF	40.42	m	\$32.03	\$4,241	
180	Permeate Cleaning Solution Return Lateral (PCSRL, 3 inch, FRP)	160.74	LF	48.99	m	\$12.03	\$5,148	
180	Permeate Flushing Line (PFL, 10 inch, FRP)	112.24	LF	34.21	m	\$121.76	\$13,866	
180	Bypass Blend Cartridge Filter Influent (BBCFL, 12 inch, FRP)	0.00	LF	0.00	m	\$147.40	\$0	
180	Bypass Blend Cartridge Filter Effluent (BBCFL, 12 inch, FRP)	0.00	LF	0.00	m	\$147.40	\$0	
180	Bypass Blend Line (BBL, 12 inch, FRP)	30.00	LF	9.14	m	\$147.40	\$4,422	
180	Common Spare High Pressure Pump Suction (CSHPPS, 6 inch, FRP)	0.00	LF	0.00	m	(\$4.43)	\$0	
180	Common Spare High Pressure Pump Discharge (CSHPPD, 0 inch, Duplex SST)	0.00	LF	0.00	m	(\$39.40)	\$0	
180	Fittings:							
180	Cartridge Filtration Influent Header (CFIH, 0 inch, FRP)	0.00	EA			\$0.00	\$0	
180	Cartridge Filtration Influent Lateral (CFEL, 0 inch, FRP)	0.00	EA			\$0.00	\$0	
180	Cartridge Filtration Effluent Lateral (CFEL, 0 inch, FRP)	0.00	EA			\$0.00	\$0	
180	Cartridge Filtration Effluent Header (CFEH, 0 inch, FRP)	0.00	EA			\$0.00	\$0	
180	Reverse Osmosis Influent Dump Header (RODHD, 30 inch, FRP)	3.00	EA			\$1,512.57	\$4,536	
180	Reverse Osmosis Influent Header (ROH4, 30 inch, FRP)	2.00	EA			\$1,512.57	\$3,025	
180	High Pressure Pump Suction (HPPS, 10 inch, FRP)	0.00	EA			\$487.04	\$0	
180	High Pressure Pump Discharge (HPPD, 10 inch, Duplex SST)	8.00	EA			\$2,833.81	\$17,815	
180	Low Pressure Brine Outlet (ERD Discharge) (LPBRO, 6 inch, Duplex SST)	18.00	EA			\$1,412.21	\$29,346	
180	Reverse Osmosis Influent Lateral (1st Stage) (ROIL1, 12 inch, Duplex SST)	0.00	EA			\$3,883.95	\$0	
180	Reverse Osmosis Influent Lateral (2nd Stage) (ROIL2, 8 inch, Duplex SST)	24.00	EA			\$1,281.67	\$54,704	
180	Reverse Osmosis Influent Lateral (3rd Stage) (ROIL3, 8 inch, Duplex SST)	0.00	EA			(\$377.90)	\$0	
180	Reverse Osmosis Influent Sild Sub Lateral (1st Stage) (ROISL1, 12 inch, Duplex SST)	0.00	EA			\$0.00	\$0	
180	Reverse Osmosis Influent Sild Sub Lateral (2nd Stage) (ROISL2, 8 inch, Duplex SST)	0.00	EA			\$0.00	\$0	
180	Brine Sild Sub Lateral (1st Stage) (BSL1, 10 inch, Duplex SST)	0.00	EA			\$0.00	\$0	
180	Brine Sild Sub Lateral (2nd Stage) (BSL2, 8 inch, Duplex SST)	0.00	EA			\$0.00	\$0	
180	Brine Sild Sub Lateral (3rd Stage) (BSL3, 8 inch, Duplex SST)	0.00	EA			\$0.00	\$0	
180	Brine Lateral (1st Stage) (BL1, 10 inch, Duplex SST)	8.00	EA			\$2,833.91	\$17,815	
180	Brine Lateral (2nd Stage) (BL2, 8 inch, Duplex SST)	12.00	EA			\$1,241.07	\$27,397	
180	Brine Lateral (3rd Stage) (BL3, 8 inch, Duplex SST)	0.00	EA			(\$327.90)	\$0	
180	Brine Header (BH, 16 inch, Duplex SST)	0.00	EA			\$487.04	\$5,844	
180	Permeate Lateral (1st Stage) (PL1, 10 inch, FRP)	12.00	EA			\$2,833.91	\$17,815	
180	Permeate Lateral (2nd Stage) (PL2, 8 inch, FRP)	6.00	EA			(\$35.75)	\$0	
180	Permeate Lateral (3rd Stage) (PL3, 8 inch, FRP)	0.00	EA			(\$35.75)	\$0	
180	Permeate Header to Flash Tank (PHFT, 24 inch, FRP)	5.00	EA			\$1,204.81	\$4,025	
180	Cleaning Solution Pump Suction Header (CSPSH, 10 inch, FRP)	1.00	EA			\$487.04	\$487	
180	Cleaning Solution Pump Suction Lateral (CSPSL, 10 inch, FRP)	0.00	EA			\$487.04	\$0	
180	Cleaning Solution Pump Discharge Lateral (CSPDL, 10 inch, FRP)	2.00	EA			\$487.04	\$974	
180	Cleaning Solution Pump Discharge Header (CSPDH, 10 inch, FRP)	0.00	EA			\$487.04	\$0	
180	Cleaning Solution Pump Recycle (CSPR, 10 inch, FRP)	4.00	EA			\$487.04	\$1,148	
180	Cleaning Solution Cartridge Filtration Influent Lateral (CSCFL, 10 inch, FRP)	1.00	EA			\$487.04	\$487	
180	Cleaning Solution Cartridge Filtration Effluent Lateral (CSCFL, 10 inch, FRP)	1.00	EA			\$487.04	\$487	
180	Cleaning Solution Supply Header (CSSH, 10 inch, FRP)	5.00	EA			\$487.04	\$2,435	
180	Cleaning Solution Supply Lateral (CSSL, 10 inch, FRP)	0.00	EA			\$487.04	\$0	
180	Brine Cleaning Solution Return Header (BCSRH, 10 inch, FRP)	5.00	EA			\$487.04	\$5,944	
180	Brine Cleaning Solution Return Lateral (BCSRL, 10 inch, FRP)	12.00	EA			\$128.10	\$641	
180	Permeate Cleaning Solution Return Header (PCSRH, 3 inch, FRP)	5.00	EA			\$128.10	\$1,537	
180	Permeate Cleaning Solution Return Lateral (PCSRL, 3 inch, FRP)	12.00	EA			\$487.04	\$487	
180	Permeate Flushing Line (PFL, 10 inch, FRP)	1.00	EA			\$289.99	\$0	
180	Bypass Blend Cartridge Filter Influent (BBCFL, 12 inch, FRP)	0.00	EA			\$548.50	\$0	
180	Bypass Blend Cartridge Filter Effluent (BBCFL, 12 inch, FRP)	0.00	EA			\$548.50	\$0	
180	Bypass Blend Line (BBL, 12 inch, FRP)	1.00	EA			\$225.73	\$0	
180	Common Spare High Pressure Pump Suction (CSHPPS, 6 inch, FRP)	0.00	EA			(\$377.90)	\$0	
180	Common Spare High Pressure Pump Discharge (CSHPPD, 0 inch, Duplex SST)	0.00	EA			(\$377.90)	\$0	
180	Valves:							
180	Cartridge Filtration Influent Header (CFIH, 0 inch,)	0.00	EA			\$0.00	\$0	
180	Cartridge Filtration Influent Lateral (CFEL, 0 inch,)	0.00	EA			\$0.00	\$0	
180	Cartridge Filtration Effluent Lateral (CFEL, 0 inch,)	0.00	EA			\$0.00	\$0	
180	Cartridge Filtration Effluent Header (CFEH, 0 inch,)	0.00	EA			\$0.00	\$0	
180	Reverse Osmosis Influent Dump Header (RODHD, 30 inch,)	1.00	EA			\$22,558.29	\$22,558	
180	Reverse Osmosis Influent Header (ROH, 30 inch,)	0.00	EA			\$22,555.29	\$0	
180	High Pressure Pump Suction (HPPS, 10 inch, SST Teflon Lined)	8.00	EA			\$7,724.95	\$43,347	
180	High Pressure Pump Discharge (HPPD, 10 inch, SST Teflon Lined)	0.00	EA			\$7,724.95	\$0	
180	Low Pressure Brine Outlet (ERD Discharge) (LPBRO, 6 inch, SST Teflon Lined)	6.00	EA			\$4,158.40	\$24,950	
180	Reverse Osmosis Influent Lateral (1st Stage) (ROIL1, 12 inch, SST Teflon Lined)	6.00	EA			\$8,767.62	\$52,546	

	B	C	D	E	F	G	H	I
1793	Reverse Osmosis Influent Lateral (2nd Stage) (ROIL2, 8 inch, SST Teflon Lined)	6.00	EA			\$1,691.47	\$34,149	
1794	Reverse Osmosis Influent Lateral (3rd Stage) (ROIL3, 0 inch, SST Teflon Lined)	0.00	EA			(\$440.82)	\$0	
1795	Reverse Osmosis Influent Skid Sub Lateral (1st Stage) (ROISL1, 12 inch, SST Teflon Lined)	0.00	EA			\$0.00	\$0	
1796	Reverse Osmosis Influent Skid Sub Lateral (2nd Stage) (ROISL2, 8 inch, SST Teflon Lined)	0.00	EA			\$0.00	\$0	
1797	Reverse Osmosis Influent Skid Sub Lateral (3rd Stage) (ROISL3, 0 inch, SST Teflon Lined)	0.00	EA			\$0.00	\$0	
1798	Brine Skid Sub Lateral (1st Stage) (BSL1, 10 inch, SST Teflon Lined)	0.00	EA			\$0.00	\$0	
1799	Brine Skid Sub Lateral (2nd Stage) (BSL2, 8 inch, SST Teflon Lined)	0.00	EA			\$0.00	\$0	
1800	Brine Skid Sub Lateral (3rd Stage) (BSL3, 0 inch, SST Teflon Lined)	0.00	EA			\$0.00	\$0	
1801	Brine Lateral (1st Stage) (BL1, 10 inch, SST Teflon Lined)	6.00	EA			\$7,214.55	\$43,347	
1802	Brine Lateral (2nd Stage) (BL2, 8 inch, SST Teflon Lined)	6.00	EA			\$6,691.47	\$34,149	
1803	Brine Lateral (3rd Stage) (BL3, 0 inch, SST Teflon Lined)	0.00	EA			(\$440.82)	\$0	
1804	Brine Header (BH, 16 inch, SST Teflon Lined)	0.00	EA			\$1,623.77	\$0	
1805	Permeate Lateral (1st Stage) (PL1, 10 inch,)	6.00	EA			\$7,214.55	\$43,347	
1806	Permeate Lateral (2nd Stage) (PL2, 8 inch,)	6.00	EA			\$4,168.49	\$24,950	
1807	Permeate Lateral (3rd Stage) (PL3, 0 inch,)	0.00	EA			(\$440.82)	\$0	
1808	Permeate Header to Plash Tank (PHT, 24 inch,)	1.00	EA			\$12,986.07	\$77,966	
1809	Cleaning Solution Pump Suction Header (CSPSH, 10 inch,)	1.00	EA			\$7,214.55	\$7,225	
1810	Cleaning Solution Pump Suction Lateral (CSPSL, 10 inch,)	1.00	EA			\$7,214.55	\$7,225	
1811	Cleaning Solution Pump Discharge Lateral (CSPDL, 10 inch,)	2.00	EA			\$7,214.55	\$14,449	
1812	Cleaning Solution Pump Discharge Header (CSPDH, 10 inch,)	0.00	EA			\$7,214.55	\$0	
1813	Cleaning Solution Pump Recycle (CSPR, 10 inch,)	2.00	EA			\$7,214.55	\$14,449	
1814	Cleaning Solution Cartridge Filtration Influent Lateral (CSCFL, 10 inch,)	1.00	EA			\$7,214.55	\$7,225	
1815	Cleaning Solution Cartridge Filtration Effluent Lateral (CSCFL, 10 inch,)	1.00	EA			\$7,214.55	\$7,225	
1816	Cleaning Solution Supply Header (CSSH, 10 inch,)	0.00	EA			\$7,214.55	\$0	
1817	Cleaning Solution Supply Lateral (CSSL, 10 inch,)	6.00	EA			\$7,214.55	\$43,347	
1818	Brine Cleaning Solution Return Header (BCSRH, 10 inch,)	1.00	EA			\$7,214.55	\$7,225	
1819	Brine Cleaning Solution Return Lateral (BCSRL, 10 inch,)	6.00	EA			\$7,214.55	\$43,347	
1820	Permeate Cleaning Solution Return Header (PCSRH, 3 inch,)	0.00	EA			\$1,628.79	\$0	
1821	Permeate Cleaning Solution Return Lateral (PCSRL, 3 inch,)	6.00	EA			\$1,628.79	\$0	
1822	Permeate Flushing Line (PFL, 10 inch,)	1.00	EA			\$7,214.55	\$7,225	
1823	Bypass Blend Cartridge Filter Influent (BBCFL, 12 inch,)	0.00	EA			\$8,757.62	\$8,758	
1824	Bypass Blend Cartridge Filter Effluent (BBCFL, 12 inch,)	0.00	EA			\$8,757.62	\$0	
1825	Bypass Blend Line (BBL, 12 inch,)	1.00	EA			\$8,757.62	\$8,758	
1826	Common Spares High Pressure Pump Suction (CSHPPS, 0 inch,)	0.00	EA			(\$440.82)	\$0	
1827	Common Spares High Pressure Pump Discharge (CSHPPD, 0 inch, SST Teflon Lined)	0.00	EA			(\$440.82)	\$0	
1828	Allownce for Misc Items	2%				\$1,430,689.77	\$28,614	
1829	Subtotal						\$1,450,304	

LIQUID CHEM 1

3/4/2017
12:21 PM

Liquid Chemical Aluminate

Printed by:

Liquid Chemical Storage & Feed - (Aluminum Sulfate (Alum))							
Located in Chemical Building A							
Is the Facility Storage Only (no metering pumps)?		No	Y/N				
Select Chemical		Aluminum Sulfate (Alum)	Overwrite Value				
Percent Active Chemical % w/w		48.50%		Select "Other" from the drop down list if using a different chemical.			
Active Chemical Form for Dosage Basis		Al2(SO4)3-14H2O		This is the intended feed strength to the process. Inputting a value in the yellow cell overwrites the cell in column "C".			
Bulk Chemical Specific Gravity		1.34		For Fluoride systems, concentration must include the Available Fluoride Ion (AFI) concentration. Typically 78.2% AFI for 23% w/w HFA. (e.g., 23% es HFA x 78.2% AFI = 16.22% es F)			
Active lb/gal solution		5.42	lb/gal	849.48	kg/m3		
Process User Inputs:							
FLOW AND CHEMICAL ADDITION	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
Application #1							
1.) Minimum flow to application point	4.00	mgd	16.14	ML/d			Input the flow that the selected dose will be applied to.
2.) Average flow to application point	4.00	mgd	16.14	ML/d			Input the flow that the selected dose will be applied to.
3.) Maximum flow to application point	12.00	mgd	48.42	ML/d			Input the flow that the selected dose will be applied to.
4.) Minimum chemical addition	40.00	mg/L					Input the dose that corresponds to the flow input above.
5.) Average chemical addition	40.00	mg/L					Input the dose that corresponds to the flow input above.
6.) Maximum chemical addition	80.00	mg/L					Input the dose that corresponds to the flow input above.
7.) Input Number of Equal Simultaneous Application Points	1	#					Input the total number of hours that the chemical is fed during the day.
8.) Hours of addition per day	24.00	hr					
Application #2							
9.) Minimum flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
10.) Average flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
11.) Maximum flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
12.) Minimum chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
13.) Average chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
14.) Maximum chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
15.) Input Number of Equal Simultaneous Application Points	0	#					Input the dose that corresponds to the flow input above.
16.) Hours of addition per day	0.00	hr					Input the total number of hours that the chemical is fed during the day.
Application #3							
17.) Minimum flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
18.) Average flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
19.) Maximum flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
20.) Minimum chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
21.) Average chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
22.) Maximum chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
23.) Input Number of Equal Simultaneous Application Points	0	#					Input the dose that corresponds to the flow input above.
24.) Hours of addition per day	0.00	hr					Input the total number of hours that the chemical is fed during the day.
CHEMICAL QUANTITIES AND FLOW							
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					Should be < 20:1, if ≥ 20:1, proceed with caution.
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10.26	gph	38.83	l/h			
Maximum at feed concentration	61.55	gph	232.98	l/h			
Calculate Chemical Metering Pump Flow Turndown	6.00	1					
Application Point #1 Chemical Usage							
Minimum as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Average as "dry" chemical	1334.40	lb/d	605.27	kg/d			
Maximum as "dry" chemical	8008.40	lb/d	3831.64	kg/d			
Chemical Metering Rates per Simultaneously Operating Pump:							
Minimum at feed concentration	10.26	gph	38.83	l/h			
Average at feed concentration	10						

Whole Plant Chemical Usage for Storage Calc:	1334.40	lb/d	605.27	kg/d			
Minimum	1334.40	lb/d	605.27	kg/d			
Average	1334.40	lb/d	605.27	kg/d			
Maximum	6008.40	lb/d	3831.64	kg/d			
Max Flow Average Dose Daily Usage	4003.20	lb/d					
Whole Plant # of Days of Storage	30.00	days					
Whole Plant Flow and Average Dose	30.00	days					
CHEMICAL STORAGE INPUTS							
25.) Flow used to calculate storage requirements	Maximum	Type					
26.) Chemical application used to calculate storage requirements	Average	Type					
27.) Input Minimum Number of Days of Storage	30.00	days					
Minimum Storage Volume	22157.23	gal	83.87	m3			
28.) Choose Chemical Delivery Method	Tank Truck	Type	15.24	m3			
Bulk Delivery Volume (Tank Truck, Totes, Drums)	4,028.93	gal		m3			Assumes 45,000 lb per Tank Truck
Optional: Input Bulk Delivery Volume for Selected Delivery Method (overwrites above calculation)	8,039.94	gal	22.88	m3			Not typically used. Use with caution.
Calculate Bulk Delivery Volume * 1/5 (for Truck Delivery Only)	2961.99	cf	83.87	m3			
Maximum of Above Delivery and Storage Volumes							
BULK TANKS:							
29.) Input Number of Tanks	2	#					
30.) Input Tank Diameter	12.00	ft	3,887.80	mm	BTD		Greater than 14' tank diameter will require on-site tank fabrication. Maximum diameter allowed for this model is 14'.
Calculate Liquid Height of Tanks	13.00	ft	3991.32	mm			
Use this Tank Height (Liquid Height * 1/2)	16.00	ft	4878.80	mm			Verify tank height within the facility. If indoors, typically 4' lower than the roof framing structure. Assumes extra 20% volume needed for each tank for head space and outlet connection elevation.
Calculate Usable Volume of Each Bulk Tank	11260.36	gal	42.70	m3			Assumes 20% of the volume of each tank is not usable (needed for head space and outlet connection elevation).
Calculate Volume of Each Bulk Tank	13538.43	gal	51.24	m3			
31.) Input Number of Rows of Tanks	1	#					
Calculate Number of Tanks per Row	2	#					
32.) Input Tank Material (FRP, PE (Polyethylene), PLS (Phenolic Lined Steel))	FRP	Type					Typically FRP
33.) Input Clear Distance Around Bulk Tanks, Day Tanks, Totes or Drums	4.00	ft	1,218.20	mm	CDT		Typically ≥ 3 ft
Calculate Actual Number of Days of Storage	30.55	days					For bulk tanks, assumes 20% of the volume of each tank is not usable (needed for head space and outlet connection elevation).
DAY TANKS:							
34.) Input Number of Day Tanks	1	#					
35.) Input Number of Rows of Tanks on Drums	1	#					
Calculate Number of Day Tanks by Material per Row	2	#					
Length of Day Tank	8.00	ft	0.97	mm			Fixed
Width of Day Tank	1.00	ft	0.91	mm			Fixed
Depth of Day Tank	1.00	ft	0.91	mm			Fixed
36.) Are Day Tanks Required?	No	Y/N					Rule: Day Tanks are only available when Delivery Method = "Tank Truck".
37.) Input Number of Day Tanks	1	#					Suggestive Day Tank
38.) Input Number of Day Tanks by Material per Row	1	#					
39.) Input Clear Distance Around Day Tanks	0.00	ft	0.00	mm			
40.) Input Clear Distance Around Day Tanks	0.00	ft	0.00	mm			
41.) Input Clear Distance Around Day Tanks	0.00	ft	0.00	mm			
TRANSFER & METERING PUMPS:							
42.) Input Number of Transfer Pumps	1	#					Fixed
43.) Input Pump Flow for Transfer	0.00	gpm					Pumping all day tanks at 100 gpm
Calculate Number of Active Metering Pumps	1	#					
44.) Input Number of Standby Metering Pumps	1	#					Rule: One active metering pump per application point.
45.) Input Number of Additional Standby Metering Pumps	0	#					
Calculate Total Number of Metering Pumps	2	#					
46.) Input Clear Distance Around Transfer and Metering Pumps	3.00	ft	914.40	mm	CDP		Typically ≥ 4 ft
Length of Transfer and Metering Pumps	3.00	ft	914.40	mm			
FACILITY SIZING							
47.) Is this Chemical Room Part of a Multiple Chemical Facility?	Yes	Y/N					
48.) Is this Chemical Room Considered the "Start Point" for this Chemical Facility?	Yes	Y/N					
49.) If this is Part of a Multiple Chemical Facility and is the "Start Point", Input the Summation of Total Number of Pumps from the Other Chemical Rooms Here	4	#					
50.) Input Common Chemical Access Corridor Width	8.00	ft	2,438.40	mm			
51.) Is Corridor Covered?	Yes	Y/N					
52.) Select Chemical Facility Covering	Building						
53.) Select Chemical Area for this Chemical	A						
CONTAINMENT AREA:							
54.) Are Stairs Required into Containment Area?	Yes	Y/N					
55.) Is Gating Required in Containment Area?	Yes	Y/N					
56.) Width of Stair Access	4.00	ft	1219.20	mm	WS		Typically not needed for tote and drum storage areas.
57.) Calculate Containment Area Length	38.00	ft	10972.80	mm			Typically not needed for tote and drum storage areas.
58.) Calculate Containment Area Width	10.00	ft	3048.00	mm			Fixed

Calculate Containment Area Width		33.00	ft	10058.40	mm		Note: verify that this dimension matches the Containment Area Width on the other chemical rooms in this facility. If not, input the larger value in the user overwrite on the room with the shorter dimension	
47.) Optional: User Overwrite of Containment Area Width			ft	2,438.40	mm			
Calculate Fire Sprinkler Water Volume		4752.00	gal	17.99	m ³			Assumes 0.2 gpm/ft for 20 min if chemical installed inside a building. If chemical is outside or under a canopy, assume no fire sprinkler water volume.
Calculate 120% of One Storage Tank Volume		16243.71	gal	61.49	m ³			
Calculate 30% of All Tank Volume		8121.86	gal	30.74	m ³			
Calculate Maximum Volume + Fire Flow Volume		20995.71	gal	79.48	m ³			
Tank Pad Volume		676.59	cf	19.22	m ³			
Tank Pads Volume		5076.16	gal	19.22	m ³			
Calculate Maximum Volume + Fire Flow Volume + Tank Pad Volume		26671.87	gal	98.89	m ³			
Calculate Maximum Volume + Fire Flow Volume + Tank Pad Volume		3485.30	cf	98.89	m ³			
Calculate Containment Wall Height (including freeboard)		3.43	ft	1046.81	mm		Note: verify that this dimension matches the Containment Wall Height on the other chemical rooms in this facility. If not, input the larger value in the user overwrite on the room with the shorter dimension	120% of 1 tank volume or 30% of all tank volume whichever is greater + fire flow volume + 6" freeboard. Should be ≤ 4.5.
48.) Optional: User Overwrite of Containment Wall Height			ft		mm			
49.) Input Depth of Burial		0.00	ft	0.00	mm	DB		
50.) Input Cutback Slope		1.00	1					Cutback slope should be 1:1 for depth of burial ≤ 5 ft, and at least 1:5.1 for depth of burial > 5 ft.
51.) Input Over Excavation Depth		1.00	ft	0.00	mm	OEXD		
Mechanical Sizing Requirements:								
Pipe Name		Input Velocity	Unit (English)	Input Velocity	Unit (Metric)	Standard Pipe Size	Unit (English)	Nominal Pipe Size
Chemical Transfer Pump Suction Header Piping		8.00	fps	1.52	m/s	1.00	in	25.00
Chemical Transfer Pump Discharge Header Piping		8.00	fps	1.83	m/s	1.00	in	25.00
Chemical Metering Pump Suction Header Piping		8.00	fps	1.52	m/s	1.00	in	25.00
Chemical Metering Pump Discharge Header Piping		8.00	fps	1.83	m/s	1.00	in	25.00
Mechanical Material Requirements:								
Pipe Name		Pipe ID	Installation Type	Pipe Material	Pipe Lining Material	Pipe Coating Material	Pipe Length	# Elbows
Chemical Transfer Pump Suction Header Piping		CTSH	Exposed	PVC	NA	NA	0.00	0.00
Chemical Transfer Pump Discharge Header Piping		CTDH	Exposed	PVC	NA	NA	0.00	0.00
Chemical Metering Pump Suction Header Piping		LCSH	Exposed	PVC	NA	NA	69.00	6.00
Chemical Metering Pump Discharge Header Piping		LCDH	Exposed	PVC	NA	NA	69.00	6.00
							L+W	#MP*4
Electrical User Inputs and Sizing Requirements:								
52.) Is this a "Critical" Facility (requiring standby power)?		No	Y/N					
53.) Is there SWGR?		No						
Electrical Equipment Lengths:								
Item		Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 60hp)	MCC Spaces for Breakers	Total MCC Spaces
Metering Pumps		8.00	0.50	No	12.00	0.00	0.00	
User Defined Item #1		0.00	0.00	No	0.00	0.00	0.00	
User Defined Item #2		0.00	0.00	No	0.00	0.00	0.00	
User Defined Item #3		0.00	0.00	No	0.00	0.00	0.00	
TOTAL			3.00		12.00	0.00	0.00	12.00
Electrical Equipment Widths:								
Equipment		Depth (ft)						
MCC		1.87						
Small AFD's		0.00						
Large AFD's		0.00						
Switchgear		0.00						
Maximum Depth		1.87						
Clear Distances:								
Clear Distance		Width	Length	Comment				
CD1			3.00	Clear Distance between wall and MCC				Typically 3 feet
CD2			1.00	Clear Distance between MCC and Small AFD				Typically 1 foot
CD3			0.00	Clear Distance between Small AFD and Large AFD				Typically Zero
CD4			0.00	Clear Distance between Large AFD and Switchgear				Typically Zero
CD5			0.00	Clear Distance between Switchgear and Contingency Specs				Typically Zero
CD6		4.00		Clear Distance behind Switchgear (If there is no Switchgear, this distance will be zero)				
CD7		3.00		Clear Distance in front of Equipment				Typically 3 feet
Contingency Length			0.00	Contingency length				Typically Zero
Electric Room Length (ft):								
CD1		3.00						
MCC		8.33						
CD2		1.00						
Small AFD's		0.00						
CD3		0.00						
Large AFD's		0.00						
CD4		0.00						
Switchgear		0.00						
CD5		0.00						
Contingency		0.00						
Total Length		12.33						
Electric Room Width (ft):								
CD6		0.00		If there is no switchgear, this distance will be zero.				
Maximum Equipment Depth		1.87						
CD7		3.00						
Total Width		4.87						
COST TABLE FOR TANKS & PUMPS:								
Tanks (Installed Cost per Gallon)		Unit Cost						
FRP		\$2.18						
Polyethylene (PE)		\$2.11						
Phenolic Lined Steel (PLS)		\$6.01						
Chemical Feed Pumps (Cost per Each)		\$7,991.45						

Estimating Dimensions:	Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Comment	Red Flags
Logic Tests ("1" = Yes, "0" = No)							
Is this Chemical Feed System included?	1						
Is the Method of Delivery "Tank Truck"?	1						
Is Day Tank Required? (1 = Yes, 0 = No)	0						
Tank Truck without Day Tank (True or False)	TRUE						
Tank Truck with Day Tank (True or False)	FALSE						
Tank Truck without Day Tank (1 = Yes, 0 = No)	1					Tank Truck without Day Tank	
Tank Truck with Day Tank (1 = Yes, 0 = No)	0					Tank Truck without Day Tank	
Is the Method of Delivery "Tote"?	0					Tote	
Is the Method of Delivery "Drum"?	0					Drum	
Length of Module (Tank Truck)	38.00	ft	10972.80	mm			
Length of Module (Tote)	0.00	ft	0.00	mm			
Length of Module (Drum)	0.00	ft	0.00	mm			
Width of Module (Tank Truck without Transfer Pump and Day Tank)	33.00	ft	10058.40	mm			
Width of Module (Tank Truck with Transfer Pump and Day Tank)	0.00	ft	0.00	mm			
Width of Module (Tote)	0.00	ft	0.00	mm			
Width of Module (Drum)	0.00	ft	0.00	mm			
Area of Module	0.00	sf	0.00	m ²			
Number of Bulk Tanks (each)	2	#					
Diameter of Bulk Tank	12.00	ft	3857.60	mm			
Volume of Each Bulk Tank	13538.43	gal	51.24	m ³			
Bulk Tank Material	FRP	Type					
Number of Day Tanks (each)	0	#					
Diameter of Day Tank	0.00	ft					
Volume of Each Day Tank	0.00	gal	0.00	m ³			
Number of Transfer Pumps	0	#					
Transfer Pump Capacity (each)	0.00	gpm	0.00	V/min			
Number of Metering Pumps	2	#				Assume fill each tank in 20 min	
Module Covered? ("1" = YES, "0" = NO)	0						
If Module Exists, Is it Covered? ("1" = Yes, "0" = No)	0						
Containment Wall Height	3.43	ft	1046.81	mm			
Slab on Grade Thickness	8.00	in	228.80	mm		Model based on 9"	
Slab on Grade Thickness	0.75	ft	228.60	mm			
Containment Wall Thickness	8.00	in	203.20	mm		Model based on 8"	
Containment Wall Thickness	0.67	ft	203.20	mm			
Tank Pad / Metering Pump Pad Height	3.00	ft	914.40	mm		EPH	
Corridor							
Length	38.00	ft	10972.80	mm			
Width	8.00	ft	2438.40	mm			
Area	288.00	sf	28.78	m ²			
Corridor Covered? ("1" = YES, "0" = NO)	1						
Electrical Room:							
Slab on Grade:							
Length	13.67	ft	4165.60	mm			
Width	6.00	ft	1828.80	mm			
Concrete Thickness	12.00	in	304.80	mm		Model based on 12"	
Concrete Thickness	1.00	ft	304.80	mm			
Walls:							
Height = FBD	10.00	ft				Fixed	
Concrete Thickness	8.00	in	203.20	mm		Model based on 8"	
Concrete Thickness	0.67	ft	203.20	mm			
Overall Dimensions							
Containment Area Length	38.00	ft	10972.80	mm			
Containment Area Width	33.00	ft	10058.40	mm			
Containment Area	1188.00	sf	110.37	m ²			
Corridor Area Length	38.00	ft	10972.80	mm			
Corridor Area Width	8.00	ft	2438.40	mm			
Corridor Area	288.00	sf	28.78	m ²			
Electrical Area Length	13.67	ft	4165.60	mm			
Electrical Area Width	8.00	ft	1828.80	mm			
Electrical Room Area	82.00	sf	7.62	m ²			
Chemical Facility Area	1558.00	sf	144.74	m ²			
Covered Chemical Area (Building)	1558.00	sf	144.74	m ²			
Covered Chemical Area (Canopy)	0.00	sf	0.00	m ²			
Total Covered Area	1640.00	sf	152.38	m ²			
Excavation Depth	1.75	ft	533.40	mm			
DESCRIPTION							
SITEWORK:							
Excavation	122.88	CY	93.85	m ³	\$8.35	\$780	
Imported Structural Backfill	115.41	CY	88.24	m ³	\$48.10	\$5,551	
Native Backfill	8.73	CY	8.68	m ³	\$7.80	\$68	
Haul Excess	114.15	CY	87.27	m ³	\$7.80	\$891	
Allowance for Misc Items	5%				\$7,290.08	\$365	
Subtotal						\$7,655	
CONCRETE:							
Slab on Grade	39.70	CY	30.35	m ³	\$358.31	\$14,145	
Containment Walls	11.70	CY	8.85	m ³	\$704.01	\$8,237	
Bulk Tank Pads	44.68	CY	34.18	m ³	\$358.31	\$15,920	
Day Tank Pads	0.00	CY	0.00	m ³	\$358.31	\$0	
Transfer Pump Pads	0.00	CY	0.00	m ³	\$358.31	\$0	
Metering Pump Pads	1.33	CY	1.02	m ³	\$358.31	\$475	
Corridor							
Slab on Grade	10.00	CY	7.85	m ³	\$358.31	\$3,563	
Electrical Room							
Slab on Grade	3.04	CY	2.32	m ³	\$358.31	\$1,082	
Allowance for Misc Items	5%				\$43,421.81	\$2,171	
Subtotal						\$45,593	
MASONRY:							
Chemical Building	1558.00	SF	144.74	m ²	\$187.30	\$281,813	
Electrical Room	82.00	SF	7.62	m ²	\$156.08	\$12,799	
Subtotal	1640.00					\$304,612	
METALS:							
Canopy	0.00	SF	0.00	m ²	\$39.18	\$0	
Metal Stairway	1	EA			\$7,804.18	\$7,804	
Grating	1	EA			\$1,873.00	\$1,873	
Allowance for Misc Items	10%				\$9,677.16	\$986	
Subtotal						\$10,845	
EQUIPMENT:							
Bulk Tank	2	EA			\$29,518.84	\$59,038	
Day Tank	0	EA			\$0.00	\$0	
Transfer Pump	0	EA			\$0.00	\$0	

Budgetary Quote: (CPES will automatically add installation fact

Metering Pump	2	EA			\$7,991.45	\$15,083
Allowance for Misc Items	10%				\$75,020.57	\$7,502
Subtotal						\$82,523
INSTRUMENTS & CONTROLS						
Instruments						
Chemical Tank Radar Level Transmitters	2	EA			\$977.63	\$1,955
Chemical Tank Beacons	2	EA			\$977.63	\$1,955
Day Tank Differential Pressure Transmitter	0	EA			\$977.63	\$0
Drum or Tote Weigh Scale	0	EA			\$1,302.51	\$0
Metering Pump Discharge Pressure Switch	2	EA			\$651.76	\$1,304
Megohmeter	1	EA			\$651.76	\$652
Sum Pump Float Switch	1	EA			\$129.88	\$326
Eyewash	1	EA			\$977.63	\$978
Number of Analog I/O Counts	6	EA			\$247.87	\$1,488
Number of Digital I/O Counts	20	EA			\$58.66	\$1,173
Number of Local Panels	1	EA			\$12,253.00	\$12,253
Number of PLCs	1	EA			\$13,035.11	\$13,035
I&C Conduit & Wire	324.00	LF	98.76	m	\$11.30	\$3,662
Allowance for Misc Items	10%				\$38,778.25	\$3,878
Subtotal						\$42,656
MECHANICAL						
Pipes						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0.00	LF	0.00	m	\$12.29	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0.00	LF	0.00	m	\$12.29	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	69.00	LF	21.03	m	\$12.29	\$848
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	69.00	LF	21.03	m	\$12.29	\$848
Elbows						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$9.43	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$9.43	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	8	EA			\$9.43	\$75
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	8	EA			\$9.43	\$75
Tees						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$9.81	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$9.81	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	2	EA			\$9.81	\$20
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	2	EA			\$9.81	\$20
End Caps						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$5.29	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$5.29	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	2	EA			\$5.29	\$11
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	2	EA			\$5.29	\$11
Valves						
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	0	EA			\$53.55	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	0	EA			\$53.55	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	4	EA			\$53.55	\$214
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC, V-902, Diaphragm)	4	EA			\$53.55	\$214
Allowance for Misc Items	10%				\$2,335.31	\$234
Subtotal						\$2,569
ELECTRICAL						
# MCC Sections	5	#			\$8,044.98	\$40,225
Switchgear	0	EA			\$37,008.81	\$0
Adjustable Frequency Drives						
Metering Pumps	0	EA			\$8,370.07	\$0
User Defined Item #1	0	EA			\$8,398.63	\$0
User Defined Item #2	0	EA			\$8,398.63	\$0
User Defined Item #3	0	EA			\$8,398.63	\$0
Electrical Conduit & Wire	216.00	LF	65.84	m	\$11.30	\$2,441
Allowance for Misc Items	10%				\$42,665.90	\$4,267
Subtotal						\$46,932
USER DEFINED ESTIMATE ITEMS:						
	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT	TOTAL COST
Item 1 Description	0.00				0.00	\$0
Item 2 Description	0.00				0.00	\$0
Item 3 Description	0.00				0.00	\$0
Item 4 Description	0.00				0.00	\$0
Item 5 Description	0.00				0.00	\$0
Item 6 Description	0.00				0.00	\$0
Item 7 Description	0.00				0.00	\$0
Item 8 Description	0.00				0.00	\$0
Item 9 Description	0.00				0.00	\$0
Item 10 Description	0.00				0.00	\$0
Item 11 Description	0.00				0.00	\$0
Item 12 Description	0.00				0.00	\$0
Item 13 Description	0.00				0.00	\$0
Item 14 Description	0.00				0.00	\$0
Item 15 Description	0.00				0.00	\$0
Subtotal						\$543,184
Subtotal						
ALLOWANCES:						
	User Override					
Finishes Allowance	2.00%		\$603,538		\$12,071	
I&C Allowance	2.00%		\$603,538		\$12,071	
Mechanical Allowance	4.00%		\$603,538		\$24,142	
Electrical Allowance	2.00%		\$603,538		\$12,071	
				Facility Cost Name		
Facility Cost	1,558	Building SF	\$387.38	\$603,538	CFLFC01	
Facility Cost with Standard Additional Project Costs Added	1,558	Building SF	\$387.38	\$603,538	CFLFC02	
Facility Cost with Standard Additional Project Costs and Contractor Markups Added	1,558	Building SF	\$578.63	\$898,388	CFLFC03	
Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	1,558	Building SF	\$565.69	\$881,342	CFLFC05	
Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	1,558	Building SF	\$565.69	\$881,342	CFLFC06	

Liquid Chemical Storage & Feed - (1)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Located in Chemical Building B																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Is This Facility Included in My Project? Yes																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Is the Facility Storage Only (no metering pumps)?																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
<table border="1"> <tr> <td>No:</td> <td>Y/N</td> <td>Overwrite Value</td> <td colspan="4"></td> </tr> <tr> <td colspan="7">Select Chemical</td> </tr> <tr> <td colspan="7"> <table border="1"> <tr> <td>Percent Active Chemical % w/w</td> <td>30.00%</td> <td>30.00%</td> <td colspan="4">Select "Other" from the drop down list if using a different chemical.</td> </tr> <tr> <td colspan="7">For Fluoride systems, concentration must include the Available Fluoride Ion (AFI) concentration. Typically 79.2% AFI for as HFA, (e.g., 23% as HFA x 79.2% A 18.22% as F)</td> </tr> </table> </td> </tr> <tr> <td colspan="7">Active Chemical Form for Dosage Basis</td> </tr> <tr> <td colspan="7"> <table border="1"> <tr> <td>CaO</td> <td>CaO</td> <td>Inputting a value in the yellow cell overwrites the cell in column "C"</td> <td colspan="4"></td> </tr> </table> </td> </tr> <tr> <td colspan="7">Basic Chemical Specific Gravity</td> </tr> <tr> <td colspan="7"> <table border="1"> <tr> <td>10.00</td> <td>10.00</td> <td>Inputting a value in the yellow cell overwrites the cell in column "C"</td> <td colspan="4"></td> </tr> </table> </td> </tr> <tr> <td colspan="7">Active lb/gal solution</td> </tr> <tr> <td colspan="7"> <table border="1"> <tr> <td>25.02</td> <td>lb/gal</td> <td>2998.06</td> <td>kg/m3</td> <td colspan="3"></td> </tr> </table> </td> </tr> <tr> <th colspan="7">Process User Inputs:</th> </tr> <tr> <th>FLOW AND CHEMICAL ADDITION</th> <th>Value (English)</th> <th>Unit (English)</th> <th>Value (Metric)</th> <th>Unit (Metric)</th> <th>Name</th> <th>Red Flags</th> </tr> <tr> <td>Application #1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>1.) Minimum flow to application point</td> <td>4.00</td> <td>mgd</td> <td>18.14</td> <td>ML/d</td> <td></td> <td>Input the flow at the selected dose w applied to</td> </tr> <tr> <td>2.) Average flow to application point</td> <td>4.00</td> <td>mgd</td> <td>18.14</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose w applied to</td> </tr> <tr> <td>3.) Maximum flow to application point</td> <td>12.00</td> <td>mgd</td> <td>48.42</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose w applied to</td> </tr> <tr> <td>4.) Minimum chemical addition</td> <td>239.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the input above</td> </tr> <tr> <td>5.) Average chemical addition</td> <td>239.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the input above</td> </tr> <tr> <td>6.) Maximum chemical addition</td> <td>239.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the input above</td> </tr> <tr> <td>7.) Input Number of Equal Simultaneous Application Points</td> <td>1</td> <td>#</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>8.) Hours of addition per day</td> <td>24.00</td> <td>hr</td> <td></td> <td></td> <td></td> <td>Input the total number of hours that the chemical is fed during the day</td> </tr> <tr> <td>Application #2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>9.) Minimum flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included</td> </tr> <tr> <td>10.) Average flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included</td> </tr> <tr> <td>11.) Maximum flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included</td> </tr> <tr> <td>12.) Minimum chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the input above</td> </tr> <tr> <td>13.) Average chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the input above</td> </tr> <tr> <td>14.) Maximum chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the input above</td> </tr> <tr> <td>15.) Input Number of Equal Simultaneous Application Points</td> <td>0</td> <td>#</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>16.) Hours of addition per day</td> <td>0.00</td> <td>hr</td> <td></td> <td></td> <td></td> <td>Input the total number of hours that the chemical is fed during the day</td> </tr> <tr> <td>Application #3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>17.) Minimum flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included</td> </tr> <tr> <td>18.) Average flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included</td> </tr> <tr> <td>19.) Maximum flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included</td> </tr> <tr> <td>20.) Minimum chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the input above</td> </tr> <tr> <td>21.) Average chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the input above</td> </tr> <tr> <td>22.) Maximum chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the input above</td> </tr> <tr> <td>23.) Input Number of Equal Simultaneous Application Points</td> <td>0</td> <td>#</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>24.) Hours of addition per day</td> <td>0.00</td> <td>hr</td> <td></td> <td></td> <td></td> <td>Input the total number of hours that the chemical is fed during the day</td> </tr> <tr> <th colspan="7">CHEMICAL QUANTITIES AND FLOW</th> </tr> <tr> <td colspan="7">Application Point #1 Chemical Usage:</td> </tr> <tr> <td>Minimum as "dry" chemical</td> <td>7973.04</td> <td>lb/d</td> <td>3618.51</td> <td>kg/d</td> <td></td> <td></td> </tr> <tr> <td>Average as "dry" chemical</td> <td>7073.04</td> <td>lb/d</td> <td>3618.51</td> <td>kg/d</td> <td></td> <td></td> </tr> <tr> <td>Maximum as "dry" chemical</td> <td>23919.12</td> <td>lb/d</td> <td>10849.53</td> <td>kg/d</td> <td></td> <td></td> </tr> <tr> <td colspan="7">Chemical Metering Rates per Simultaneously Operating Point:</td> </tr> <tr> <td>Minimum at feed concentration</td> <td>13.28</td> <td>gph</td> <td>50.28</td> <td>L/h</td> <td></td> <td></td> </tr> <tr> <td>Average at feed concentration</td> <td>13.28</td> <td>gph</td> <td>50.28</td> <td>L/h</td> <td></td> <td></td> </tr> <tr> <td>Maximum at feed concentration</td> <td>30.83</td> <td>gph</td> <td>150.79</td> <td>L/h</td> <td></td> <td></td> </tr> <tr> <td>Calculate Chemical Metering Pump Flow Turndown</td> <td>3.00</td> <td>1</td> <td></td> <td></td> <td></td> <td>Should be < 20, if ≥ 20 proceed w caution</td> </tr> <tr> <td colspan="7">Application Point #2 Chemical Usage:</td> </tr> <tr> <td>Minimum as "dry" chemical</td> <td>0.00</td> <td>lb/d</td> <td>0.00</td> <td>kg/d</td> <td></td> <td></td> </tr> <tr> <td>Average as "dry" chemical</td> <td>0.00</td> <td>lb/d</td> <td>0.00</td> <td>kg/d</td> <td></td> <td></td> </tr> <tr> <td>Maximum as "dry" chemical</td> <td>0.00</td> <td>lb/d</td> <td>0.00</td> <td>kg/d</td> <td></td> <td></td> </tr> <tr> <td colspan="7">Chemical Metering Rates per Simultaneously Operating Point:</td> </tr> <tr> <td>Minimum at feed concentration</td> <td>0.00</td> <td>gph</td> <td>0.00</td> <td>L/h</td> <td></td> <td></td> </tr> <tr> <td>Average at feed concentration</td> <td>0.00</td> <td>gph</td> <td>0.00</td> <td>L/h</td> <td></td> <td></td> </tr> <tr> <td>Maximum at feed concentration</td> <td>0.00</td> <td>gph</td> <td>0.00</td> <td>L/h</td> <td></td> <td></td> </tr> <tr> <td>Calculate Chemical Metering Pump Flow Turndown</td> <td>0.00</td> <td>1</td> <td></td> <td></td> <td></td> <td>Should be < 20, if ≥ 20 proceed w caution</td> </tr> <tr> <td colspan="7">Application Point #3 Chemical Usage:</td> </tr> <tr> <td>Minimum as "dry" chemical</td> <td>0.00</td> <td>lb/d</td> <td>0.00</td> <td>kg/d</td> <td></td> <td></td> </tr> <tr> <td>Average as "dry" chemical</td> <td>0.00</td> <td>lb/d</td> <td>0.00</td> <td>kg/d</td> <td></td> <td></td> </tr> <tr> <td>Maximum as "dry" chemical</td> <td>0.00</td> <td>lb/d</td> <td>0.00</td> <td>kg/d</td> <td></td> <td></td> </tr> <tr> <td colspan="7">Chemical Metering Rates per Simultaneously Operating Point:</td> </tr> <tr> <td>Minimum at feed concentration</td> <td>0.00</td> <td>gph</td> <td>0.00</td> <td>L/h</td> <td></td> <td></td> </tr> <tr> <td>Average at feed concentration</td> <td>0.00</td> <td>gph</td> <td>0.00</td> <td>L/h</td> <td></td> <td></td> </tr> <tr> <td>Maximum at feed concentration</td> <td>0.00</td> <td>gph</td> <td>0.00</td> <td>L/h</td> <td></td> <td></td> </tr> <tr> <td>Calculate Chemical Metering Pump Flow Turndown</td> <td>0.00</td> <td>1</td> <td></td> <td></td> <td></td> <td>Should be < 20, if ≥ 20 proceed w caution</td> </tr> </table>							No:	Y/N	Overwrite Value					Select Chemical							<table border="1"> <tr> <td>Percent Active Chemical % w/w</td> <td>30.00%</td> <td>30.00%</td> <td colspan="4">Select "Other" from the drop down list if using a different chemical.</td> </tr> <tr> <td colspan="7">For Fluoride systems, concentration must include the Available Fluoride Ion (AFI) concentration. Typically 79.2% AFI for as HFA, (e.g., 23% as HFA x 79.2% A 18.22% as F)</td> </tr> </table>							Percent Active Chemical % w/w	30.00%	30.00%	Select "Other" from the drop down list if using a different chemical.				For Fluoride systems, concentration must include the Available Fluoride Ion (AFI) concentration. Typically 79.2% AFI for as HFA, (e.g., 23% as HFA x 79.2% A 18.22% as F)							Active Chemical Form for Dosage Basis							<table border="1"> <tr> <td>CaO</td> <td>CaO</td> <td>Inputting a value in the yellow cell overwrites the cell in column "C"</td> <td colspan="4"></td> </tr> </table>							CaO	CaO	Inputting a value in the yellow cell overwrites the cell in column "C"					Basic Chemical Specific Gravity							<table border="1"> <tr> <td>10.00</td> <td>10.00</td> <td>Inputting a value in the yellow cell overwrites the cell in column "C"</td> <td colspan="4"></td> </tr> </table>							10.00	10.00	Inputting a value in the yellow cell overwrites the cell in column "C"					Active lb/gal solution							<table border="1"> <tr> <td>25.02</td> <td>lb/gal</td> <td>2998.06</td> <td>kg/m3</td> <td colspan="3"></td> </tr> </table>							25.02	lb/gal	2998.06	kg/m3				Process User Inputs:							FLOW AND CHEMICAL ADDITION	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Application #1							1.) Minimum flow to application point	4.00	mgd	18.14	ML/d		Input the flow at the selected dose w applied to	2.) Average flow to application point	4.00	mgd	18.14	ML/d		Input the flow that the selected dose w applied to	3.) Maximum flow to application point	12.00	mgd	48.42	ML/d		Input the flow that the selected dose w applied to	4.) Minimum chemical addition	239.00	mg/L				Input the dose that corresponds to the input above	5.) Average chemical addition	239.00	mg/L				Input the dose that corresponds to the input above	6.) Maximum chemical addition	239.00	mg/L				Input the dose that corresponds to the input above	7.) Input Number of Equal Simultaneous Application Points	1	#					8.) Hours of addition per day	24.00	hr				Input the total number of hours that the chemical is fed during the day	Application #2							9.) Minimum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included	10.) Average flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included	11.) Maximum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included	12.) Minimum chemical addition	0.00	mg/L				Input the dose that corresponds to the input above	13.) Average chemical addition	0.00	mg/L				Input the dose that corresponds to the input above	14.) Maximum chemical addition	0.00	mg/L				Input the dose that corresponds to the input above	15.) Input Number of Equal Simultaneous Application Points	0	#					16.) Hours of addition per day	0.00	hr				Input the total number of hours that the chemical is fed during the day	Application #3							17.) Minimum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included	18.) Average flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included	19.) Maximum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included	20.) Minimum chemical addition	0.00	mg/L				Input the dose that corresponds to the input above	21.) Average chemical addition	0.00	mg/L				Input the dose that corresponds to the input above	22.) Maximum chemical addition	0.00	mg/L				Input the dose that corresponds to the input above	23.) Input Number of Equal Simultaneous Application Points	0	#					24.) Hours of addition per day	0.00	hr				Input the total number of hours that the chemical is fed during the day	CHEMICAL QUANTITIES AND FLOW							Application Point #1 Chemical Usage:							Minimum as "dry" chemical	7973.04	lb/d	3618.51	kg/d			Average as "dry" chemical	7073.04	lb/d	3618.51	kg/d			Maximum as "dry" chemical	23919.12	lb/d	10849.53	kg/d			Chemical Metering Rates per Simultaneously Operating Point:							Minimum at feed concentration	13.28	gph	50.28	L/h			Average at feed concentration	13.28	gph	50.28	L/h			Maximum at feed concentration	30.83	gph	150.79	L/h			Calculate Chemical Metering Pump Flow Turndown	3.00	1				Should be < 20, if ≥ 20 proceed w caution	Application Point #2 Chemical Usage:							Minimum as "dry" chemical	0.00	lb/d	0.00	kg/d			Average as "dry" chemical	0.00	lb/d	0.00	kg/d			Maximum as "dry" chemical	0.00	lb/d	0.00	kg/d			Chemical Metering Rates per Simultaneously Operating Point:							Minimum at feed concentration	0.00	gph	0.00	L/h			Average at feed concentration	0.00	gph	0.00	L/h			Maximum at feed concentration	0.00	gph	0.00	L/h			Calculate Chemical Metering Pump Flow Turndown	0.00	1				Should be < 20, if ≥ 20 proceed w caution	Application Point #3 Chemical Usage:							Minimum as "dry" chemical	0.00	lb/d	0.00	kg/d			Average as "dry" chemical	0.00	lb/d	0.00	kg/d			Maximum as "dry" chemical	0.00	lb/d	0.00	kg/d			Chemical Metering Rates per Simultaneously Operating Point:							Minimum at feed concentration	0.00	gph	0.00	L/h			Average at feed concentration	0.00	gph	0.00	L/h			Maximum at feed concentration	0.00	gph	0.00	L/h			Calculate Chemical Metering Pump Flow Turndown	0.00	1				Should be < 20, if ≥ 20 proceed w caution
No:	Y/N	Overwrite Value																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
Select Chemical																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
<table border="1"> <tr> <td>Percent Active Chemical % w/w</td> <td>30.00%</td> <td>30.00%</td> <td colspan="4">Select "Other" from the drop down list if using a different chemical.</td> </tr> <tr> <td colspan="7">For Fluoride systems, concentration must include the Available Fluoride Ion (AFI) concentration. Typically 79.2% AFI for as HFA, (e.g., 23% as HFA x 79.2% A 18.22% as F)</td> </tr> </table>							Percent Active Chemical % w/w	30.00%	30.00%	Select "Other" from the drop down list if using a different chemical.				For Fluoride systems, concentration must include the Available Fluoride Ion (AFI) concentration. Typically 79.2% AFI for as HFA, (e.g., 23% as HFA x 79.2% A 18.22% as F)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
Percent Active Chemical % w/w	30.00%	30.00%	Select "Other" from the drop down list if using a different chemical.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
For Fluoride systems, concentration must include the Available Fluoride Ion (AFI) concentration. Typically 79.2% AFI for as HFA, (e.g., 23% as HFA x 79.2% A 18.22% as F)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Active Chemical Form for Dosage Basis																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
<table border="1"> <tr> <td>CaO</td> <td>CaO</td> <td>Inputting a value in the yellow cell overwrites the cell in column "C"</td> <td colspan="4"></td> </tr> </table>							CaO	CaO	Inputting a value in the yellow cell overwrites the cell in column "C"																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
CaO	CaO	Inputting a value in the yellow cell overwrites the cell in column "C"																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
Basic Chemical Specific Gravity																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
<table border="1"> <tr> <td>10.00</td> <td>10.00</td> <td>Inputting a value in the yellow cell overwrites the cell in column "C"</td> <td colspan="4"></td> </tr> </table>							10.00	10.00	Inputting a value in the yellow cell overwrites the cell in column "C"																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
10.00	10.00	Inputting a value in the yellow cell overwrites the cell in column "C"																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
Active lb/gal solution																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
<table border="1"> <tr> <td>25.02</td> <td>lb/gal</td> <td>2998.06</td> <td>kg/m3</td> <td colspan="3"></td> </tr> </table>							25.02	lb/gal	2998.06	kg/m3																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
25.02	lb/gal	2998.06	kg/m3																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
Process User Inputs:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
FLOW AND CHEMICAL ADDITION	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Application #1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
1.) Minimum flow to application point	4.00	mgd	18.14	ML/d		Input the flow at the selected dose w applied to																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
2.) Average flow to application point	4.00	mgd	18.14	ML/d		Input the flow that the selected dose w applied to																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
3.) Maximum flow to application point	12.00	mgd	48.42	ML/d		Input the flow that the selected dose w applied to																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
4.) Minimum chemical addition	239.00	mg/L				Input the dose that corresponds to the input above																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
5.) Average chemical addition	239.00	mg/L				Input the dose that corresponds to the input above																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
6.) Maximum chemical addition	239.00	mg/L				Input the dose that corresponds to the input above																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
7.) Input Number of Equal Simultaneous Application Points	1	#																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
8.) Hours of addition per day	24.00	hr				Input the total number of hours that the chemical is fed during the day																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Application #2																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
9.) Minimum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
10.) Average flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
11.) Maximum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
12.) Minimum chemical addition	0.00	mg/L				Input the dose that corresponds to the input above																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
13.) Average chemical addition	0.00	mg/L				Input the dose that corresponds to the input above																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
14.) Maximum chemical addition	0.00	mg/L				Input the dose that corresponds to the input above																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
15.) Input Number of Equal Simultaneous Application Points	0	#																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
16.) Hours of addition per day	0.00	hr				Input the total number of hours that the chemical is fed during the day																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Application #3																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
17.) Minimum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
18.) Average flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
19.) Maximum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose w applied to Enter 0 if Unit Process is not included																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
20.) Minimum chemical addition	0.00	mg/L				Input the dose that corresponds to the input above																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
21.) Average chemical addition	0.00	mg/L				Input the dose that corresponds to the input above																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
22.) Maximum chemical addition	0.00	mg/L				Input the dose that corresponds to the input above																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
23.) Input Number of Equal Simultaneous Application Points	0	#																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
24.) Hours of addition per day	0.00	hr				Input the total number of hours that the chemical is fed during the day																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
CHEMICAL QUANTITIES AND FLOW																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Application Point #1 Chemical Usage:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Minimum as "dry" chemical	7973.04	lb/d	3618.51	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Average as "dry" chemical	7073.04	lb/d	3618.51	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Maximum as "dry" chemical	23919.12	lb/d	10849.53	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Chemical Metering Rates per Simultaneously Operating Point:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Minimum at feed concentration	13.28	gph	50.28	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Average at feed concentration	13.28	gph	50.28	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Maximum at feed concentration	30.83	gph	150.79	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Calculate Chemical Metering Pump Flow Turndown	3.00	1				Should be < 20, if ≥ 20 proceed w caution																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Application Point #2 Chemical Usage:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Minimum as "dry" chemical	0.00	lb/d	0.00	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Average as "dry" chemical	0.00	lb/d	0.00	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Maximum as "dry" chemical	0.00	lb/d	0.00	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Chemical Metering Rates per Simultaneously Operating Point:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Minimum at feed concentration	0.00	gph	0.00	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Average at feed concentration	0.00	gph	0.00	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Maximum at feed concentration	0.00	gph	0.00	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Calculate Chemical Metering Pump Flow Turndown	0.00	1				Should be < 20, if ≥ 20 proceed w caution																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Application Point #3 Chemical Usage:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Minimum as "dry" chemical	0.00	lb/d	0.00	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Average as "dry" chemical	0.00	lb/d	0.00	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Maximum as "dry" chemical	0.00	lb/d	0.00	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Chemical Metering Rates per Simultaneously Operating Point:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Minimum at feed concentration	0.00	gph	0.00	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Average at feed concentration	0.00	gph	0.00	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Maximum at feed concentration	0.00	gph	0.00	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Calculate Chemical Metering Pump Flow Turndown	0.00	1				Should be < 20, if ≥ 20 proceed w caution																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	

14.) Input Number of Chemicals	146	150	154	158	162	166	170	174	178	182	186	190	194	198	202	206	210	214	218	222	226	230	234	238	242	246	250	254	258	262	266	270	274	278	282	286	290	294	298	302	306	310	314	318	322	326	330	334	338	342	346	350	354	358	362	366	370	374	378	382	386	390	394	398	402	406	410	414	418	422	426	430	434	438	442	446	450	454	458	462	466	470	474	478	482	486	490	494	498	502	506	510	514	518	522	526	530	534	538	542	546	550	554	558	562	566	570	574	578	582	586	590	594	598	602	606	610	614	618	622	626	630	634	638	642	646	650	654	658	662	666	670	674	678	682	686	690	694	698	702	706	710	714	718	722	726	730	734	738	742	746	750	754	758	762	766	770	774	778	782	786	790	794	798	802	806	810	814	818	822	826	830	834	838	842	846	850	854	858	862	866	870	874	878	882	886	890	894	898	902	906	910	914	918	922	926	930	934	938	942	946	950	954	958	962	966	970	974	978	982	986	990	994	998	1002	1006	1010	1014	1018	1022	1026	1030	1034	1038	1042	1046	1050	1054	1058	1062	1066	1070	1074	1078	1082	1086	1090	1094	1098	1102	1106	1110	1114	1118	1122	1126	1130	1134	1138	1142	1146	1150	1154	1158	1162	1166	1170	1174	1178	1182	1186	1190	1194	1198	1202	1206	1210	1214	1218	1222	1226	1230	1234	1238	1242	1246	1250	1254	1258	1262	1266	1270	1274	1278	1282	1286	1290	1294	1298	1302	1306	1310	1314	1318	1322	1326	1330	1334	1338	1342	1346	1350	1354	1358	1362	1366	1370	1374	1378	1382	1386	1390	1394	1398	1402	1406	1410	1414	1418	1422	1426	1430	1434	1438	1442	1446	1450	1454	1458	1462	1466	1470	1474	1478	1482	1486	1490	1494	1498	1502	1506	1510	1514	1518	1522	1526	1530	1534	1538	1542	1546	1550	1554	1558	1562	1566	1570	1574	1578	1582	1586	1590	1594	1598	1602	1606	1610	1614	1618	1622	1626	1630	1634	1638	1642	1646	1650	1654	1658	1662	1666	1670	1674	1678	1682	1686	1690	1694	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	1778	1782	1786	1790	1794	1798	1802	1806	1810	1814	1818	1822	1826	1830	1834	1838	1842	1846	1850	1854	1858	1862	1866	1870	1874	1878	1882	1886	1890	1894	1898	1902	1906	1910	1914	1918	1922	1926	1930	1934	1938	1942	1946	1950	1954	1958	1962	1966	1970	1974	1978	1982	1986	1990	1994	1998	2002	2006	2010	2014	2018	2022	2026	2030	2034	2038	2042	2046	2050	2054	2058	2062	2066	2070	2074	2078	2082	2086	2090	2094	2098	2102	2106	2110	2114	2118	2122	2126	2130	2134	2138	2142	2146	2150	2154	2158	2162	2166	2170	2174	2178	2182	2186	2190	2194	2198	2202	2206	2210	2214	2218	2222	2226	2230	2234	2238	2242	2246	2250	2254	2258	2262	2266	2270	2274	2278	2282	2286	2290	2294	2298	2302	2306	2310	2314	2318	2322	2326	2330	2334	2338	2342	2346	2350	2354	2358	2362	2366	2370	2374	2378	2382	2386	2390	2394	2398	2402	2406	2410	2414	2418	2422	2426	2430	2434	2438	2442	2446	2450	2454	2458	2462	2466	2470	2474	2478	2482	2486	2490	2494	2498	2502	2506	2510	2514	2518	2522	2526	2530	2534	2538	2542	2546	2550	2554	2558	2562	2566	2570	2574	2578	2582	2586	2590	2594	2598	2602	2606	2610	2614	2618	2622	2626	2630	2634	2638	2642	2646	2650	2654	2658	2662	2666	2670	2674	2678	2682	2686	2690	2694	2698	2702	2706	2710	2714	2718	2722	2726	2730	2734	2738	2742	2746	2750	2754	2758	2762	2766	2770	2774	2778	2782	2786	2790	2794	2798	2802	2806	2810	2814	2818	2822	2826	2830	2834	2838	2842	2846	2850	2854	2858	2862	2866	2870	2874	2878	2882	2886	2890	2894	2898	2902	2906	2910	2914	2918	2922	2926	2930	2934	2938	2942	2946	2950	2954	2958	2962	2966	2970	2974	2978	2982	2986	2990	2994	2998	3002	3006	3010	3014	3018	3022	3026	3030	3034	3038	3042	3046	3050	3054	3058	3062	3066	3070	3074	3078	3082	3086	3090	3094	3098	3102	3106	3110	3114	3118	3122	3126	3130	3134	3138	3142	3146	3150	3154	3158	3162	3166	3170	3174	3178	3182	3186	3190	3194	3198	3202	3206	3210	3214	3218	3222	3226	3230	3234	3238	3242	3246	3250	3254	3258	3262	3266	3270	3274	3278	3282	3286	3290	3294	3298	3302	3306	3310	3314	3318	3322	3326	3330	3334	3338	3342	3346	3350	3354	3358	3362	3366	3370	3374	3378	3382	3386	3390	3394	3398	3402	3406	3410	3414	3418	3422	3426	3430	3434	3438	3442	3446	3450	3454	3458	3462	3466	3470	3474	3478	3482	3486	3490	3494	3498	3502	3506	3510	3514	3518	3522	3526	3530	3534	3538	3542	3546	3550	3554	3558	3562	3566	3570	3574	3578	3582	3586	3590	3594	3598	3602	3606	3610	3614	3618	3622	3626	3630	3634	3638	3642	3646	3650	3654	3658	3662	3666	3670	3674	3678	3682	3686	3690	3694	3698	3702	3706	3710	3714	3718	3722	3726	3730	3734	3738	3742	3746	3750	3754	3758	3762	3766	3770	3774	3778	3782	3786	3790	3794	3798	3802	3806	3810	3814	3818	3822	3826	3830	3834	3838	3842	3846	3850	3854	3858	3862	3866	3870	3874	3878	3882	3886	3890	3894	3898	3902	3906	3910	3914	3918	3922	3926	3930	3934	3938	3942	3946	3950	3954	3958	3962	3966	3970	3974	3978	3982	3986	3990	3994	3998	4002	4006	4010	4014	4018	4022	4026	4030	4034	4038	4042	4046	4050	4054	4058	4062	4066	4070	4074	4078	4082	4086	4090	4094	4098	4102	4106	4110	4114	4118	4122	4126	4130	4134	4138	4142	4146	4150	4154	4158	4162	4166	4170	4174	4178	4182	4186	4190	4194	4198	4202	4206	4210	4214	4218	4222	4226	4230	4234	4238	4242	4246	4250	4254	4258	4262	4266	4270	4274	4278	4282	4286	4290	4294	4298	4302	4306	4310	4314	4318	4322	4326	4330	4334	4338	4342	4346	4350	4354	4358	4362	4366	4370	4374	4378	4382	4386	4390	4394	4398	4402	4406	4410	4414	4418	4422	4426	4430	4434	4438	4442	4446	4450	4454	4458	4462	4466	4470	4474	4478	4482	4486	4490	4494	4498	4502	4506	4510	4514	4518	4522	4526	4530	4534	4538	4542	4546	4550	4554	4558	4562	4566	4570	4574	4578	4582	4586	4590	4594	4598	4602	4606	4610	4614	4618	4622	4626	4630	4634	4638	4642	4646	4650	4654	4658	4662	4666	4670	4674	4678	4682	4686	4690	4694	4698	4702	4706	4710	4714	4718	4722	4726	4730	4734	4738	4742	4746	4750	4754	4758	4762	4766	4770	4774	4778	4782	4786	4790	4794	4798	4802	4806	4810	4814	4818	4822	4826	4830	4834	4838	4842	4846	4850	4854	4858	4862	4866	4870	4874	4878	4882	4886	4890	4894	4898	4902	4906	4910	4914	4918	4922	4926	4930	4934	4938	4942	4946	4950	4954	4958	4962	4966	4970	4974	4978	4982	4986	4990	4994	4998	5002	5006	5010	5014	5018	5022	5026	5030	5034	5038	5042	5046	5050	5054	5058	5062	5066	5070	5074	5078	5082	5086	5090	5094	5098	5102	5106	5110	5114	5118	5122	5126	5130	5134	5138	5142	5146	5150	5154	5158	5162	5166	5170	5174	5178	5182	5186	5190	5194	5198	5202	5206	5210	5214	5218	5222	5226	5230	5234	5238	5242	5246	5250	5254	5258	5262	5266	5270	5274	5278	5282	5286	5290	5294	5298	5302	5306	5310	5314	5318	5322	5326	5330	5334	5338	5342	5346	5350	5354	5358	5362	5366	5370	5374	5378	5382	5386	5390	5394	5398	5402	5406	5410	5414	5418	5422	5426	5430	5434	5438	5442	5446	5450	5454	5458	5462	5466	5470	5474	5478	5482	5486	5490	5494	5498	5502	5506	5510	5514	5518	5522	5526	5530	5534	5538	5542	5546	5550	5554	5558	5562	5566	5570	5574	5578	5582	5586	5590	5594	5598	5602	5606	5610	5614	5618	5622	5626	5630	5634	5638	5642	5646	5650	5654	5658	5662	5666	5670	5674	5678	5682	5686	5690	5694	5698	5702	5706	5710	5714	5718	5722
--------------------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------

Calculate Containment Area Width		35.00	ft	10668.00	mm		Note: verify that this dimension matches the Containment Area Width on the other chemical rooms in this facility. If not, input the larger value in the user overwrite on the room with the shorter dimension	
47.) Optional: User Overwrite of Containment Area Width			ft	2,438.40	mm			
Calculate Fire Sprinkler Water Volume		2800.00	gal	10.60	m ³			Assumes 0.2 gpm/sf for 20 min if char installed inside a building. If chemical is outside or under a canopy, assume no sprinkler water volume.
Calculate 120% of Ons Storage Tank Volume		41624.52	gal	157.57	m ³			
Calculate 30% of All Tank Volume		10406.13	gal	39.39	m ³			
Calculate Maximum Volume + Fire Flow Volume		14424.52	gal	168.17	m ³			
Tank Pads Volume		339.29	cf	9.61	m ³			
Tank Pads Volume		2538.05	gal	9.61	m ³			
Calculate Maximum Volume + Fire Flow Volume + Tank Pad Volume		48562.60	gal	177.77	m ³			
Calculate Maximum Volume + Fire Flow Volume + Tank Pad Volume		6277.99	cf	177.77	m ³			
Calculate Containment Wall Height (including freeboard)		9.47	ft	2886.01	mm		Note: verify that this dimension matches the Containment Wall Height on the other chemical rooms in this facility. If not, input the larger value in the user overwrite on the room with the shorter dimension	120% of 1 tank volume or 30% of all the volume whichever is greater + fire flow volume + 6" freeboard. Should be ≤ 4
48.) Optional: User Overwrite of Containment Wall Height			ft	2,438.40	mm			
49.) Input Depth of Burial		0.00	ft	0.00	mm			
50.) Input Cutback Slope		1.00	:1		DB			Cutback slope should be 1:1 for depth burial ≤ 5 ft, and at least 1:1.5 for depth burial > 5 ft.
51.) Input Over Excavation Depth		1.00	ft	0.00	mm		OEXD	
Mechanical Sizing Requirements:								
Pipe Name	Input Velocity	Unit (English)	Input Velocity	Unit (Metric)	Standard Pipe Size	Unit (English)	Unit (Metric)	Nominal Pipe Size
Chemical Transfer Pump Suction Header Piping	2.00	fps	0.61	m/s	1.00	in	in	25.00
Chemical Transfer Pump Discharge Header Piping	6.00	fps	1.83	m/s	1.00	in	in	25.00
Chemical Metering Pump Suction Header Piping	2.00	fps	0.61	m/s	1.00	in	in	25.00
Chemical Metering Pump Discharge Header Piping	6.00	fps	1.83	m/s	1.00	in	in	25.00
Mechanical Material Requirements:								
Pipe Name	Pipe ID	Installation Type	Pipe Material	Pipe Lining Material	Pipe Coating Material	Pipe Length	# Elbows	MCC
Chemical Transfer Pump Suction Header Piping	CTSH	Exposed	PVC	NA	NA	0.00	0.00	
Chemical Transfer Pump Discharge Header Piping	CTDH	Exposed	PVC	NA	NA	0.00	0.00	
Chemical Metering Pump Suction Header Piping	LCSH	Exposed	PVC	NA	NA	55.00	8.00	
Chemical Metering Pump Discharge Header Piping	LCDH	Exposed	PVC	NA	NA	55.00	8.00	L+W #MP*4
Electrical User Inputs and Sizing Requirements:								
52.) Is this a "Critical" Facility (requiring standby power)?	No	Y/N						
53.) Is there SWGR?	No							
Electrical Equipment Lengths:								
Item	Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 50hp	MCC Spaces for Breakers	Total MCC Spaces	MCC
Metering Pumps	0.00	0.50	No	0.00	0.00	0.00	0.00	
User Defined Item #1	0.00	0.00	No	0.00	0.00	0.00	0.00	
User Defined Item #2	0.00	0.00	No	0.00	0.00	0.00	0.00	
User Defined Item #3	0.00	0.00	No	0.00	0.00	0.00	0.00	
TOTAL		0.00		0.00	0.00	0.00	0.00	0.00
Electrical Equipment Widths:								
Equipment	Depth (ft)							
MCC	0.00							
Small AFD's	0.00							
Large AFD's	0.00							
Switchgear	0.00							
Maximum Depth	0.00							
Clear Distances:								
Clear Distance	Width	Length	Comment					
CD1		3.00	Clear Distance between wall and MCC	Typically 3 feet				
CD2		1.00	Clear Distance between MCC and Small AFD	Typically 1 foot				
CD3		0.00	Clear Distance between Small AFD and Large AFD	Typically Zero				
CD4		0.00	Clear Distance between Large AFD and Switchgear	Typically Zero				
CD5		0.00	Clear Distance between Switchgear and Contingency Space	Typically Zero				
CD6	4.00		Clear Distance behind Switchgear (If there is no Switchgear, this distance will be Zero)					
CD7	3.00		Clear Distance in front of Equipment	Typically 3 feet				
Contingency Length		0.00	Contingency length	Typically Zero				
Electric Room Length (ft):								
CD1	3.00							
MCC	0.00							
CD2	1.00							
Small AFD's	0.00							
CD3	0.00							
Large AFD's	0.00							
CD4	0.00							
Switchgear	0.00							
CD5	0.00							
Contingency	0.00							
Total Length	0.00							
Electric Room Width (ft):								
CD6	0.00		If there is no switchgear, this distance will be Zero.					
Maximum Equipment Depth	0.00							
CD7	3.00							
Total Width	0.00							
COST TABLE FOR TANKS & PUMPS:								
Tanks (Installed Cost per Gallon)		Unit Cost						
FRP		\$2.06						
Polyethylene (PE)	\$	2.11						
Phenolic Lined Steel (PLS)		\$8.01						
Chemical Feed Pumps (Cost per Each)		\$7,991.45						

Estimating Dimensions:		Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Comment	Red Flags
Logic Tests ("1" = Yes, "0" = No):								
Is this Chemical Feed System included?	1							
Is the Method of Delivery "Tank Truck"?	1							
Is Day Tank Required? (1 = Yes, 0 = No)	0							
Tank Truck without Day Tank (True or False)	TRUE							
Tank Truck with Day Tank (True or False)	FALSE							
Tank Truck without Day Tank (1 = Yes, 0 = No)	1							
Tank Truck with Day Tank (1 = Yes, 0 = No)	0						Tank Truck without Day Tank	
Is the Method of Delivery "Tote"?	0						Tank Truck without Day Tank	
Is the Method of Delivery "Drum"?	0						Tote	
Length of Module (Tank Truck)	20.00	ft		6096.00	mm		Drum	
Length of Module (Tote)	0.00	ft		0.00	mm			
Length of Module (Drum)	0.00	ft		0.00	mm			
Width of Module (Tank Truck without Transfer Pump and Day Tank)	35.00	ft		10686.00	mm			
Width of Module (Tank Truck with Transfer Pump and Day Tank)	0.00	ft		0.00	mm			
Width of Module (Tote)	0.00	ft		0.00	mm			
Width of Module (Drum)	0.00	ft		0.00	mm			
Area of Module	0.00	sf		0.00	m ²			
Number of Bulk Tanks (each)	1	#						
Diameter of Bulk Tank	12.00	ft		3857.60	mm			
Volume of Each Bulk Tank	34687.10	gal		131.30	m ³			
Bulk Tank Material	FRP	Type						
Number of Day Tanks (each)	0	#						
Diameter of Day Tank	0.00	ft						
Volume of Each Day Tank	0.00	gal		0.00	m ³			
Number of Transfer Pumps	0	#						
Transfer Pump Capacity (each)	0.00	gpm		0.00	l/min			
Number of Metering Pumps	2	#					Assume fill each tank in 20 min	
Module Covered? ("1" = YES, "0" = NO)	0							
If Module Exists, Is it Covered? ("1" = Yes, "0" = No)	0							
Containment Wall Height	9.47	ft		2888.01	mm			
Slab on Grade Thickness	0.00	in		228.60	mm			
Slab on Grade Thickness	0.75	ft		228.60	mm		Model based on 9"	
Containment Wall Thickness	8.00	in		203.20	mm			
Containment Wall Thickness	0.67	ft		203.20	mm		Model based on 8"	
Tank Pad / Metering Pump Pad Height	3.00	ft		914.40	mm			
Corridor						EPH		
Length	20.00	ft		6096.00	mm			
Width	0.00	ft		0.00	mm			
Area	0.00	sf		0.00	m ²			
Corridor Covered? ("1" = YES, "0" = NO)	1							
Electrical Room:								
Slab on Grade								
Length	0.00	ft		0.00	mm			
Width	0.00	ft		0.00	mm			
Concrete Thickness	12.00	in		304.80	mm			
Concrete Thickness	1.00	ft		304.80	mm		Model based on 12"	
Walls:								
Height = FBD	10.00	ft						
Concrete Thickness	8.00	in		203.20	mm		Fixed	
Concrete Thickness	0.67	ft		203.20	mm		Model based on 8"	
Overall Dimensions								
Containment Area Length	20.00	ft		6096.00	mm			
Containment Area Width	35.00	ft		10686.00	mm			
Containment Area	700.00	sf		55.03	m ²			
Corridor Area Length	20.00	ft		6096.00	mm			
Corridor Area Width	0.00	ft		0.00	mm			
Corridor Area	0.00	sf		0.00	m ²			
Electrical Area Length	0.00	ft		0.00	mm			
Electrical Area Width	0.00	ft		0.00	mm			
Electrical Room Area	0.00	sf		0.00	m ²			
Chemical Facility Area	700.00	sf		65.03	m ²			
Covered Chemical Area (Building)	700.00	sf		65.03	m ²			
Covered Chemical Area (Canopy)	0.00	sf		0.00	m ²			
Total Covered Area	700.00	sf		65.03	m ²			
Excavation Depth	1.75	ft		533.40	mm			
Description		Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
SITEWORK:								
Excavation	57.80	CY		44.19	m ³	\$6.35	\$367	
Imported Structural Backfill	51.85	CY		39.64	m ³	\$48.10	\$2,494	
Native Backfill	8.24	CY		4.77	m ³	\$7.80	\$46	
Haul Excess	51.58	CY		39.42	m ³	\$7.80	\$402	
Allowance for Misc Items	5%					\$3,312.07	\$186	
Subtotal								\$3,478
CONCRETE:								
Slab on Grade	23.77	CY		18.17	m ³	\$358.31	\$8,468	
Containment Walls	17.53	CY		13.41	m ³	\$704.01	\$12,344	
Bulk Tank Pads	22.34	CY		17.08	m ³	\$356.31	\$7,660	
Day Tank Pads	0.00	CY		0.00	m ³	\$356.31	\$0	
Transfer Pump Pads	0.00	CY		0.00	m ³	\$356.31	\$0	
Metering Pump Pads	1.33	CY		1.02	m ³	\$356.31	\$0	
Corridor								\$475
Slab on Grade	0.00	CY		0.00	m ³	\$356.31	\$0	
Electrical Room								
Slab on Grade	0.00	CY		0.00	m ³	\$356.31	\$0	
Allowance for Misc Items	5%					\$29,247.16	\$1,482	
Subtotal								\$30,710
MASONRY:								
Chemical Building	Moderate							
Electrical Room	700.00	SF		65.03	m ²	\$187.30	\$131,110	
Subtotal	0.00	SF		0.00	m ²	\$156.00	\$0	
								\$131,110
METALS:								
Canopy	0.00	SF		0.00	m ²	\$39.18	\$0	
Metal Stairway	1	EA				\$7,804.16	\$7,804	
Gating	1	EA				\$1,873.00	\$1,873	
Allowance for Misc Items	10%					\$9,677.16	\$968	
Subtotal								\$10,645
EQUIPMENT:								
Bulk Tank	1	EA						
Day Tank	0	EA				\$71,337.89	\$71,339	
Transfer Pump	0	EA				\$0.00	\$0	
						\$0.00	\$0	
								Budgetary Quota: (CPES will automatically add Installation Factor)

Metering Pump	2	EA			\$7,991.46	\$15,983
Allowance for Misc Items	10%				\$87,320.78	\$8,732
Subtotal						\$98,053
INSTRUMENTS & CONTROLS:						
Instruments						
Chemical Tank Radar Level Transmitters	1	EA			\$977.63	\$978
Chemical Tank Beacons	1	EA			\$977.63	\$978
Day Tank Differential Pressure Transmitter	0	EA			\$1,302.51	\$0
Drum or Tote Weigh Scale	0	EA			\$651.76	\$0
Metering Pump Discharge Pressure Switch	2	EA			\$651.76	\$852
Magmeter	1	EA			\$323.88	\$326
Sump Pump Float Switch	1	EA			\$977.63	\$978
Eyewash	1	EA			\$247.87	\$1,238
Number of Analog I/O Counts	5	EA			\$58.68	\$997
Number of Digital I/O Counts	17	EA			\$12,253.00	\$12,253
Number of Local Panels	1	EA			\$13,035.11	\$13,035
Number of PLCs	1	EA			\$11.30	\$1,582
I&C Conduit & Wire	140.00	LF	42.87	m	\$34,319.88	\$3,432
Allowance for Misc Items	10%					\$37,752
Subtotal						
MECHANICAL:						
Pipe						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0.00	LF	0.00	m	\$12.29	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0.00	LF	0.00	m	\$12.29	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	55.00	LF	16.76	m	\$12.29	\$878
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	55.00	LF	16.76	m	\$12.29	\$878
Elbows						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$9.43	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$9.43	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	8	EA			\$9.43	\$75
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	8	EA			\$9.43	\$75
Tees						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$9.81	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$9.81	\$20
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	2	EA			\$9.81	\$20
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	2	EA			\$9.81	\$20
End Caps						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$5.29	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$5.29	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	2	EA			\$5.29	\$11
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	2	EA			\$5.29	\$11
Valves						
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	0	EA			\$53.55	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	0	EA			\$33.55	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	4	EA			\$53.55	\$214
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC, V-902, Diaphragm)	4	EA			\$53.55	\$214
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC, V-902, Diaphragm)	4	EA			\$1,991.26	\$199
Allowance for Misc Items	10%					\$2,190
Subtotal						
ELECTRICAL:						
# MCC Sections	0	#			\$8,044.98	\$0
Switchgear		EA			\$37,008.81	\$0
Adjustable Frequency Drives						
Metering Pumps	0	EA			\$8,370.07	\$0
User Defined Item #1	0	EA			\$4,398.63	\$0
User Defined Item #2	0	EA			\$4,398.63	\$0
User Defined Item #3	0	EA			\$4,398.63	\$0
Electrical Conduit & Wire	0.00	LF	0.00	m	\$11.31	\$0
Allowance for Misc Items	10%				\$0.00	\$0
Subtotal						
USER DEFINED ESTIMATE ITEMS:	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT	TOTAL COST
Item 1 Description	0.00				0.00	\$0
Item 2 Description	0.00				0.00	\$0
Item 3 Description	0.00				0.00	\$0
Item 4 Description	0.00				0.00	\$0
Item 5 Description	0.00				0.00	\$0
Item 6 Description	0.00				0.00	\$0
Item 7 Description	0.00				0.00	\$0
Item 8 Description	0.00				0.00	\$0
Item 9 Description	0.00				0.00	\$0
Item 10 Description	0.00				0.00	\$0
Item 11 Description	0.00				0.00	\$0
Item 12 Description	0.00				0.00	\$0
Item 13 Description	0.00				0.00	\$0
Item 14 Description	0.00				0.00	\$0
Item 15 Description	0.00				0.00	\$0
Subtotal						\$311,937
Subtotal						
ALLOWANCES:		User Override				
Finishes Allowance	2.00%		3348.597		\$8,932	
I&C Allowance	2.00%		3348.597		\$8,932	
Mechanical Allowance	4.00%		3348.597		\$13,864	
Electrical Allowance	2.00%		3348.597		\$8,932	
Facility Cost	700	Building SF	\$485.14		\$348,697	CFLFC01
Facility Cost with Standard Additional Project Costs Added	700	Building SF	\$485.14		\$348,697	CFLFC02
Facility Cost with Standard Additional Project Costs and Contractor Markups Added	700	Building SF	\$737.03		\$515,921	CFLFC03
Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	700	Building SF	\$723.05		\$506,133	CFLFC05
Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	700	Building SF	\$723.05		\$506,133	CFLFC06

Liquid Chemical Storage & Feed - (Sulfuric Acid)							
Located in Chemical Building C							
Is the Facility Storage Only (no metering pumps)?	No	Y/N					
		Overwrite Value					
Select Chemical	Sulfuric Acid		Select "Other" from the drop down list if using a different chemical.				
Percent Active Chemical % w/w	93.00%		This is the intended feed strength to the process. Inputting a value in the yellow cell overwrites the cell in column "C".				
Active Chemical Form for Dosage Basis	H2SO4		Inputting a value in the yellow cell overwrites the cell in column "C".				
Bulk Chemical Specific Gravity	1.83		Inputting a value in the yellow cell overwrites the cell in column "C".				
Active lb/gal solution	14.19	lb/gal	1700.80	kg/m3			
Process User Inputs:	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
FLOW AND CHEMICAL ADDITION							
Application #1							
1.) Minimum flow to application point	4.00	mgd	18.14	ML/d			Input the flow that the selected dose will be applied to.
2.) Average flow to application point	4.00	mgd	18.14	ML/d			Input the flow that the selected dose will be applied to.
3.) Maximum flow to application point	12.00	mgd	48.42	ML/d			Input the flow that the selected dose will be applied to.
4.) Minimum chemical addition	80.00	mg/L					Input the dose that corresponds to the flow input above.
5.) Average chemical addition	80.00	mg/L					Input the dose that corresponds to the flow input above.
6.) Maximum chemical addition	80.00	mg/L					Input the dose that corresponds to the flow input above.
7.) Input Number of Equal Simultaneous Application Points	1	#					Input the total number of hours that the chemical is fed during the day.
8.) Hours of addition per day	24.00	hr					
Application #2							
9.) Minimum flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
10.) Average flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
11.) Maximum flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
12.) Minimum chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
13.) Average chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
14.) Maximum chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
15.) Input Number of Equal Simultaneous Application Points	0	#					
16.) Hours of addition per day	0.00	hr					Input the total number of hours that the chemical is fed during the day.
Application #3							
17.) Minimum flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
18.) Average flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
19.) Maximum flow to application point	0.00	mgd	0.00	ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.
20.) Minimum chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
21.) Average chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
22.) Maximum chemical addition	0.00	mg/L					Input the dose that corresponds to the flow input above.
23.) Input Number of Equal Simultaneous Application Points	0	#					
24.) Hours of addition per day	0.00	hr					Input the total number of hours that the chemical is fed during the day.
CHEMICAL QUANTITIES AND FLOW							
Application Point #1 Chemical Usage:							
Minimum as "dry" chemical	2688.80	lb/d	1210.55	kg/d			
Average as "dry" chemical	2688.80	lb/d	1210.55	kg/d			
Maximum as "dry" chemical	8000.40	lb/d	3631.64	kg/d			
Chemical Metering Ratios per Simultaneously Operating Pump:							
Minimum at feed concentration	7.83	gph	29.68	L/h			
Average at feed concentration	7.83	gph	29.68	L/h			
Maximum at feed concentration	23.50	gph	88.97	L/h			
Calculate Chemical Metering Pump Flow Turndown							
	3.00	1					Should be < 20:1, If ≥ 20:1, proceed with caution.
Application Point #2 Chemical Usage							
Minimum as "dry" chemical	2.00	lb/d	0.89	kg/d			
Average as "dry" chemical	2.00	lb/d	0.89	kg/d			
Maximum as "dry" chemical	2.00	lb/d	0.89	kg/d			
Chemical Metering Ratios per Simultaneously Operating Pump:							
Minimum at feed concentration	1.00	gph	0.89	L/h			
Average at feed concentration	1.00	gph	0.89	L/h			
Maximum at feed concentration	3.00	gph	0.89	L/h			
Calculate Chemical Metering Pump Flow Turndown							
	3.00	1					
Application Point #3 Chemical Usage							
Minimum as "dry" chemical	0.10	lb/d	0.04	kg/d			
Average as "dry" chemical	0.10	lb/d	0.04	kg/d			
Maximum as "dry" chemical	0.10	lb/d	0.04	kg/d			
Chemical Metering Ratios per Simultaneously Operating Pump:							
Minimum at feed concentration	0.01	gph	0.04	L/h			
Average at feed concentration	0.01	gph	0.04	L/h			
Maximum at feed concentration	0.01	gph	0.04	L/h			
Calculate Chemical Metering Pump Flow Turndown							
	0.01	1					

Whole Plant Chemical Usage for Storage Calc:					Should be used with 2014 or previous version	
Minimum	2608.80	lb/d	1210.55	kg/d		
Average	2608.80	lb/d	1210.55	kg/d		
Maximum	8008.40	lb/d	3831.84	kg/d		
Max Flow Average Dose Daily Usage	8008.40	lb/d				
Whole Plant # of Days of Storage	30.00	days				
Maximum Flow and Average Dose	30.00	days				
CHEMICAL STORAGE INPUTS						
25.) Flow used to calculate storage requirements	Maximum	Type				
26.) Chemical application used to calculate storage requirements	Average	Type				
27.) Input Minimum Number of Days of Storage	30.00	days				
Minimum Storage Volume	16822.26	gal	64.06	m3		
28.) Choose Chemical Delivery Method	Tank Truck	Type				
Bulk Delivery Volume (Tank Truck, Totes, Drums)	2,940.46	gal	11.18	m3	Assumes 45,000 lb per Tank Truck	
Optional: Input Bulk Delivery Volume for Selected Delivery Method (overrides above calculation)		gal		m3	Not typically used. Use with caution	
Calculate Bulk Delivery Volume * 1.5 (for Truck Delivery Only)	4,422.69	gal	16.74	m3		
Maximum of Above Delivery and Storage Volumes	2262.18	cf	64.06	m3		
BULK TANKS:						
29.) Input Number of Tanks	1	#				
30.) Input Tank Diameter	12.00	ft	3,867.80	mm	BTD	Greater than 14' tank diameter will req on-site tank fabrication. Maximum diameter allowed for this model is 14'.
Calculate Liquid Height of Tanks	20.00	ft	6096.62	mm		
Use this Tank Height (Liquid Height * 1.2)	25.00	ft	7820.00	mm		Verify tank height in relationship to the facility structure. Add more tanks or increase diameter if needed.
Calculate Usable Volume of Each Bulk Tank	17625.56	gal	66.72	m3		Verify tank height within the facility. If indoors, typically 4' lower than the roof framing structure. Assumes extra 20% volume needed for each tank for head space and outlet connection elevation.
Calculate Volume of Each Bulk Tank	21150.07	gal	80.06	m3		Assumes 20% of the volume of each tank is not usable (needed for head space & outlet connection elevation).
31.) Input Number of Rows of Tanks	1	#				
Calculate Number of Tanks per Row	1	#				
32.) Input Tank Material (FRP, PE (Polyethylene), PLS (Phenolic Lined Steel))	FRP	Type				Typically FRP
33.) Input Clear Distance Around Bulk Tanks, Day Tanks, Totes or Drums	4.00	ft	1,219.20	mm	CDT	Typically ≥ 3 ft
Calculate Actual Number of Days of Storage	31.25	days				
TOTES & DRUMS:						
Calculate Number of Totes or Drums	0	#				
34.) Input Number of Rows of Totes or Drums	1	#				
Calculate Number of Drums or Totes per Row	1	#				
Length of Totes	8.00	ft	0.40	mm		
Width of Totes	0.00	ft	0.00	mm		
Height of Totes	5.00	ft	0.00	mm		
DAY TANKS:						
35.) Are Day Tanks Required?	No	Y/N				Rule: Day Tanks are only available w/ the Delivery Method = "Tank Truck"
36.) Input Number of Day Tanks	0	#				
Calculate Day Tank Volume (Volume of tank)	0.00	gal	0.00	ft3		
Calculate Day Tank Volume (Volume of tank)	0.00	gal	0.00	ft3		
Calculate Day Tank Volume (Volume of tank)	0.00	gal	0.00	ft3		
Calculate Day Tank Volume (Volume of tank)	0.00	gal	0.00	ft3		
Calculate Day Tank Volume (Volume of tank)	0.00	gal	0.00	ft3		
TRANSFER & METERING PUMPS:						
Number of Active Pumps	0	#				
37.) Input Number of Active Pumps	0	#				
Calculate Number of Active Metering Pumps	1	#				
Calculate Number of Standby Metering Pumps	1	#				
38.) Input Number of Additional Standby Metering Pumps	0	#				
Calculate Total Number of Metering Pumps	2	#				
39.) Input Clear Distance Around Transfer and Metering Pumps	3.00	ft	914.40	mm	CDP	Typically ≥ 4 ft
Length of Transfer and Metering Pumps	3.00	ft	914.40	mm		Fixed. Conservatively assumes Pulsafeeder metering pump type.
FACILITY SIZING:						
40.) Is this Chemical Room Part of a Multiple Chemical Facility?	Yes	Y/N				
41.) Is this Chemical Room Considered the "Start Point" for this Chemical Facility?	No	Y/N				
42.) Input Number of Multiple Chemical Facility Start Points. Input the Start Point Number. Summarize Total Number of Dangers from the Other Chemical Rooms here		#				There should only be one "start point" for the facility. Recommend choosing the facility with the greatest width as the "start point".
43.) Input Common Chemical Access Corridor Width	0.00	ft		mm		Total number of rooms in facility is 6, so calculated corridor width is 0.00 ft (0.00 m) and 0.00 ft of the corridor width is used. Total corridor width is 0.00 ft.
44.) Is Corridor Covered?	Yes	Y/N				Input zero if a corridor is not required. Assumes Chem facilities are in series. Chem facilities are in parallel, input 1/2 total corridor width.
45.) Select Chemical Facility Covering	Building					
46.) Select Chemical Area for this Chemical	C					
CONTAINMENT AREA:						
Are Stairs Required into Containment Area?	Yes	Y/N				
Is Grating Required in Containment Area?	Yes	Y/N				
Width of Stair Access	4.00	ft	1219.20	mm	WS	Typically not needed for tote and drum storage areas.
Calculate Containment Area Length	20.00	ft	6096.00	mm		Typically not needed for tote and drum storage areas.

Calculate Containment Area Width		33.00	ft	10058.40	mm		Notes: verify that this dimension matches the Containment Area Width on the other chemical rooms in this facility. If not, input the larger value in the user overwrite on the room with the shorter dimension	
47.) Optional: User Overwrite of Containment Area Width			ft	2,438.40	mm			
Calculate Fire Sprinkler Water Volume		2640.00	gal	9.99	m ³			Assumes 0.2 ppm/s for 20 min if chemical installed inside a building. If chemical is outside or under a canopy, assume no fire sprinkler water volume.
Calculate 120% of One Storage Tank Volume		25380.80	gal	98.08	m ³			
Calculate 30% of All Tank Volume		6345.20	gal	24.02	m ³			
Calculate Maximum Volume + Fire Flow Volume		28020.80	gal	106.07	m ³			
Tank Pads Volume		339.29	cf	9.81	m ³			
Tank Pads Volume		2538.08	gal	9.81	m ³			
Calculate Maximum Volume + Fire Flow Volume + Tank Pad Volume		30558.88	gal	115.88	m ³			
Calculate Maximum Volume + Fire Flow Volume + Tank Pad Volume		4085.13	cf	115.88	m ³			
Calculate Containment Wall Height (including freeboard)		6.69	ft	2038.99	mm		Note: verify that this dimension matches the Containment Wall Height on the other chemical rooms in this facility. If not, input the larger value in the user overwrite on the room with the shorter dimension	120% of 1 tank volume or 30% of all tank volume whichever is greater + fire flow volume + 6" freeboard. Should be ≤ 5'
48.) Optional: User Overwrite of Containment Wall Height			ft	2,438.40	mm			
49.) Input Depth of Burial		0.00	ft	0.00	mm	DB		
50.) Input Cutback Slope		1.00	1					Cutback slope should be 1:1 for depth of burial ≤ 5 ft, and at least 1:1.5 for depth of burial > 5 ft.
51.) Input Over Excavation Depth		1.00	ft	0.00	mm	OEXD		
Mechanical Sizing Requirements:								
Pipe Name	Input Velocity	Unit (English)	Input Velocity	Unit (Metric)	Standard Pipe Size	Unit (English)	Nominal Pipe Size	
Chemical Transfer Pump Suction Header Piping	2.00	fps	0.61	m/s	1.00	in	25 00	
Chemical Transfer Pump Discharge Header Piping	6.00	fps	1.83	m/s	1.00	in	25 00	
Chemical Metering Pump Suction Header Piping	2.00	fps	0.61	m/s	1.00	in	25 00	
Chemical Metering Pump Discharge Header Piping	6.00	fps	1.83	m/s	1.00	in	25 00	
Mechanical Material Requirements:								
Pipe Name	Pipe ID	Installation Type	Pipe Material	Pipe Lining Material	Pipe Coating Material	Pipe Length	# Elbows	
Chemical Transfer Pump Suction Header Piping	CTSH	Exposed	PVC	NA	NA	0.00	0.00	
Chemical Transfer Pump Discharge Header Piping	CTDH	Exposed	PVC	NA	NA	0.00	0.00	
Chemical Metering Pump Suction Header Piping	LCSH	Exposed	PVC	NA	NA	53.00	8.00	
Chemical Metering Pump Discharge Header Piping	LCDH	Exposed	PVC	NA	NA	53.00	8.00	
L+W #MP*4								
Electrical User Inputs and Sizing Requirements:								
52.) Is this a "Critical" Facility (requiring standby power)?	No	Y/N						
53.) Is there SWGR?	No							
Electrical Equipment Lengths:								
Item	Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 50hp	MCC Spaces for Breakers	MCC	
Metering Pumps	0.00	0.50	No	0.00	0.00	0.00		
User Defined Item #1	0.00	0.00	No	0.00	0.00	0.00		
User Defined Item #2	0.00	0.00	No	0.00	0.00	0.00		
User Defined Item #3	0.00	0.00	No	0.00	0.00	0.00		
TOTAL		0.00		0.00	0.00	0.00	0.00	
Electrical Equipment Widths:								
Equipment	Depth (ft)							
MCC	0.00							
Small AFD's	0.00							
Large AFD's	0.00							
Switchgear	0.00							
Maximum Depth	0.00							
Clear Distances:								
Clear Distance	Width	Length	Comment					
CD1		3.00	Clear Distance between wall and MCC	Typically 3 feet				
CD2		1.00	Clear Distance between MCC and Small AFD	Typically 1 foot				
CD3		0.00	Clear Distance between Small AFD and Large AFD	Typically Zero				
CD4		0.00	Clear Distance between Large AFD and Switchgear	Typically Zero				
CD5		0.00	Clear Distance between Switchgear and Contingency Space	Typically Zero				
CD6	4.00		Clear Distance behind Switchgear (If there is no Switchgear, this distance will be Zero)					
CD7	3.00		Clear Distance in front of Equipment	Typically 3 feet				
Contingency Length		0.00	Contingency length	Typically Zero				
Electric Room Length (ft):								
CD1	3.00							
MCC	0.00							
CD2	1.00							
Small AFD's	0.00							
CD3	0.00							
Large AFD's	0.00							
CD4	0.00							
Switchgear	0.00							
CD5	0.00							
Contingency	0.00							
Total Length	0.00							
Electric Room Width (ft):								
CD6	0.00		If there is no switchgear, this distance will be Zero.					
Maximum Equipment Depth	0.00							
CD7	3.00							
Total Width	0.00							
COST TABLE FOR TANKS & PUMPS:								
Tanks (Installed Cost per Gallon)		Unit Cost						
FRP		\$2.11						
Polyethylene (PE)	\$	2.11						
Phenolic Lined Steel (PLS)		\$6.01						
Chemical Feed Pumps (Cost per Each)		\$7,991.45						

Estimating Dimensions:	Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Comment	Red Flags
Logic Tests ("1" = Yes, "0" = No):							
Is this Chemical Feed System Included?	1						
Is the Method of Delivery "Tank Truck"?	1						
Is Day Tank Required? (1 = Yes, 0 = No)	0						
Tank Truck without Day Tank (True or False)	TRUE						
Tank Truck with Day Tank (True or False)	FALSE						
Tank Truck without Day Tank (1 = Yes, 0 = No)	1					Tank Truck without Day Tank	
Tank Truck with Day Tank (1 = Yes, 0 = No)	0					Tank Truck without Day Tank	
Is the Method of Delivery "Tote"?	0					Tote	
Is the Method of Delivery "Drum"?	0					Drum	
Length of Module (Tank Truck)	20.00	ft	6096.00	mm			
Length of Module (Tote)	0.00	ft	0.00	mm			
Length of Module (Drum)	0.00	ft	0.00	mm			
Width of Module (Tank Truck without Transfer Pump and Day Tank)	33.00	ft	10058.40	mm			
Width of Module (Tank Truck with Transfer Pump and Day Tank)	0.00	ft	0.00	mm			
Width of Module (Tote)	0.00	ft	0.00	mm			
Width of Module (Drum)	0.00	ft	0.00	mm			
Area of Module	0.00	sf	0.00	m ²			
Number of Bulk Tanks (each)	1	#					
Diameter of Bulk Tank	12.00	ft	3857.50	mm			
Volume of Each Bulk Tank	21150.67	gal	80.08	m ³			
Bulk Tank Material	FRP	Type					
Number of Day Tanks (each)	0	#					
Diameter of Day Tank	0.00	ft					
Volume of Each Day Tank	0.00	gal	0.00	m ³			
Number of Transfer Pumps	0	#					
Transfer Pump Capacity (each)	0.00	gpm	0.00	l/min			Assume fill each tank in 20 min
Number of Metering Pumps	2	#					
Module Covered? ("1" = YES, "0" = NO)	0						
If Module Exists, Is it Covered? ("1" = Yes, "0" = No)	0						
Containment Wall Height	8.69	ft	2038.99	mm			
Slab on Grade Thickness	9.00	in	228.60	mm			Model based on 9"
Slab on Grade Thickness	0.75	ft	228.60	mm			
Containment Wall Thickness	8.00	in	203.20	mm			Model based on 8"
Containment Wall Thickness	0.67	ft	203.20	mm			
Tank Pad / Metering Pump Pad Height	3.00	ft	914.40	mm			EPH
Corridor							
Length	20.00	ft	6096.00	mm			
Width	0.00	ft	0.00	mm			
Area	0.00	sf	0.00	m ²			
Corridor Covered? ("1" = YES, "0" = NO)	1						
Electrical Room							
Slab on Grade:							
Length	0.00	ft	0.00	mm			
Width	0.00	ft	0.00	mm			
Concrete Thickness	12.00	in	304.80	mm			Model based on 12"
Concrete Thickness	1.00	ft	304.80	mm			
Walls							
Height = FBD	10.00	ft					Fixed
Concrete Thickness	8.00	in	203.20	mm			Model based on 8"
Concrete Thickness	0.67	ft	203.20	mm			
Overall Dimensions							
Containment Area Length	20.00	ft	6096.00	mm			
Containment Area Width	33.00	ft	10058.40	mm			
Containment Area	660.00	sf	61.32	m ²			
Corridor Area Length	20.00	ft	6096.00	mm			
Corridor Area Width	0.00	ft	0.00	mm			
Corridor Area	0.00	sf	0.00	m ²			
Electrical Area Length	0.00	ft	0.00	mm			
Electrical Area Width	0.00	ft	0.00	mm			
Electrical Room Area	0.00	sf	0.00	m ²			
Chemical Facility Area	660.00	sf	61.32	m ²			
Covered Chemical Area (Building)	660.00	sf	61.32	m ²			
Covered Chemical Area (Canopy)	0.00	sf	0.00	m ²			
Total Covered Area	660.00	sf	61.32	m ²			
Excavation Depth	1.75	ft	533.40	mm			
Cost Summary:							
Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
SITEWORK:							
Excavation	54.84	CY	41.78	m ³	\$6.35	\$347	
Imported Structural Backfill	48.89	CY	37.38	m ³	\$48.10	\$2,352	
Native Backfill	8.01	CY	4.80	m ³	\$7.80	\$47	
Haul Excess	48.83	CY	37.18	m ³	\$7.80	\$380	
Allowance for Misc Items	5%				\$3,124.86	\$156	
Subtotal							\$3,281
CONCRETE:							
Slab on Grade	22.47	CY	17.18	m ³	\$356.31	\$8,006	
Containment Walls	12.08	CY	9.22	m ³	\$704.01	\$8,489	
Bulk Tank Pads	22.34	CY	17.08	m ³	\$356.31	\$7,960	
Day Tank Pads	0.00	CY	0.00	m ³	\$356.31	\$0	
Transfer Pump Pads	0.00	CY	0.00	m ³	\$356.31	\$0	
Metering Pump Pads	1.33	CY	1.02	m ³	\$356.31	\$475	
Corridor							
Slab on Grade	0.00	CY	0.00	m ³	\$356.31	\$0	
Electrical Room							
Slab on Grade	0.00	CY	0.00	m ³	\$356.31	\$0	
Allowance for Misc Items	5%				\$24,929.74	\$1,248	
Subtotal							\$28,176
MASONRY:							
Chemical Building	660.00	SF	61.32	m ²	\$187.30	\$123,616	
Electrical Room	0.00	SF	0.00	m ²	\$156.08	\$0	
Subtotal	660.00						\$123,616
METALS:							
Canopy	0.00	SF	0.00	m ²	\$39.18	\$0	
Metal Stairway	1	EA			\$7,804.18	\$7,804	
Graing	1	EA			\$1,873.00	\$1,873	
Allowance for Misc Items	10%				\$9,877.18	\$968	
Subtotal							\$10,845
EQUIPMENT							
Bulk Tank	1	EA			\$44,573.70	\$44,574	
Day Tank	0	EA			\$0.00	\$0	
Transfer Pump	0	EA			\$0.00	\$0	

Metering Pump	2	EA			\$7,991.48	\$15,983
Allowance for Misc Items	10%				\$80,558.59	\$8,058
Subtotal						\$88,612
INSTRUMENTS & CONTROLS						
Instruments						
Chemical Tank Radar Level Transmitters	1	EA			\$977.63	\$978
Chemical Tank Beacons	1	EA			\$977.63	\$978
Day Tank Differential Pressure Transmitter	0	EA			\$977.63	\$0
Drum or Tote Weight Scale	0	EA			\$1,202.51	\$0
Metering Pump Discharge Pressure Switch	2	EA			\$691.76	\$1,304
Magmeter	1	EA			\$651.76	\$652
Sump Pump Float Switch	1	EA			\$325.88	\$326
Eyewash	1	EA			\$977.63	\$978
Number of Analog I/O Counts	5	EA			\$287.87	\$1,238
Number of Digital I/O Counts	17	EA			\$58.66	\$997
Number of Local Panels	1	EA			\$12,253.00	\$12,253
Number of PLCs	1	EA			\$13,035.11	\$13,035
I&C Conduit & Wire	140.00	LF	42.67	m	\$11.30	\$1,582
Allowance for Misc Items	10%				\$34,319.88	\$3,432
Subtotal						\$37,752
MECHANICAL						
Pipe						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0.00	LF	0.00	m	\$12.29	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0.00	LF	0.00	m	\$12.29	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	53.00	LF	16.15	m	\$12.29	\$651
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	53.00	LF	16.15	m	\$12.29	\$651
Elbows						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$9.43	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$9.43	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	8	EA			\$9.43	\$75
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	8	EA			\$9.43	\$75
Tees						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$9.81	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$9.81	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	2	EA			\$9.81	\$20
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	2	EA			\$9.81	\$20
End Caps						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$5.29	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$5.29	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	2	EA			\$5.29	\$11
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	2	EA			\$5.29	\$11
Valves						
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	0	EA			\$53.55	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	0	EA			\$53.55	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	4	EA			\$53.55	\$214
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC, V-902, Diaphragm)	4	EA			\$53.55	\$214
Allowance for Misc Items	10%				\$1,942.11	\$194
Subtotal						\$2,136
ELECTRICAL						
# MCC Sections	0	#			\$8,044.98	\$0
Switchgear	0	EA			\$37,008.81	\$0
Adjustable Frequency Drives						
Metering Pumps	0	EA			\$8,370.07	\$0
User Defined Item #1	0	EA			\$8,308.63	\$0
User Defined Item #2	0	EA			\$8,308.63	\$0
User Defined Item #3	0	EA			\$8,308.63	\$0
Electrical Conduit & Wire	0.00	LF	0.00	m	\$11.30	\$0
Allowance for Misc Items	10%				\$0.00	\$0
Subtotal						\$0
USER DEFINED ESTIMATE ITEMS:						
Item 1 Description	0.00	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT
Item 2 Description	0.00					0.00
Item 3 Description	0.00					0.00
Item 4 Description	0.00					0.00
Item 5 Description	0.00					0.00
Item 6 Description	0.00					0.00
Item 7 Description	0.00					0.00
Item 8 Description	0.00					0.00
Item 9 Description	0.00					0.00
Item 10 Description	0.00					0.00
Item 11 Description	0.00					0.00
Item 12 Description	0.00					0.00
Item 13 Description	0.00					0.00
Item 14 Description	0.00					0.00
Item 15 Description	0.00					0.00
Subtotal						\$0
Subtotal						\$270,221
ALLOWANCES						
Finishes Allowance	2.00%		User Override			
I&C Allowance	2.00%					
Mechanical Allowance	4.00%					
Electrical Allowance	2.00%					
Facility Cost	680	Building SF		\$454.92	\$300,248	CFLFC01
Facility Cost with Standard Additional Project Costs Added	680	Building SF		\$454.92	\$300,245	CFLFC02
Facility Cost with Standard Additional Project Costs and Contractor Markups Added	680	Building SF		\$677.16	\$448,926	CFLFC03
Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	680	Building SF		\$684.31	\$438,446	CFLFC05
Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	680	Building SF		\$684.31	\$438,446	CFLFC06

Dry Chemical Storage & Feed - (Sodium Carbonate)							
Located in Stand Alone Chemical Building							
Is This Facility Included in My Project? Yes							
Chemical	Overwrite Value						
	Sodium Carbonate	Select "Other" from the drop down list if using a different chemical					
	Percent Active Chemical	99.0%	Inputting a value in the yellow cell overwrites the cell in column "C"				
	Active Chemical Form for Dosage Basis	Na2CO3	Inputting a value in the yellow cell overwrites the cell in column "C"				
	Bulk Density lb/cf	65.0	Inputting a value in the yellow cell overwrites the cell in column "C"				
	Active lb/gal solution	0.10	Typical range for solution strength of this chemical is 0.1 to 0.5				
	Calculate Solution Strength	1.20%	This is the intended feed strength to the process				
Process User Inputs:	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	Comment
FLOW AND CHEMICAL ADDITION							
Application #1							
1.) Minimum flow to application point	4.00	mgd	15.14	ML/d			Input the flow that the selected dose will be applied to.
2.) Average flow to application point	4.00	mgd	15.14	ML/d			Input the flow that the selected dose will be applied to.
3.) Maximum flow to application point	12.00	mgd	45.42	ML/d			Input the flow that the selected dose will be applied to.
4.) Minimum chemical addition	120.00	mg/L					Input the dose that corresponds to the flow input above.
5.) Average chemical addition	120.00	mg/L					Input the dose that corresponds to the flow input above.
6.) Maximum chemical addition	120.00	mg/L					Input the dose that corresponds to the flow input above.
7.) Input Number of Equal Simultaneous Application Points	1	#					Input the dose that corresponds to the flow input above.
8.) Hours of addition per day	24	hr					Input the total number of hours that the chemical is fed during the day.
Application #2							
9.) Minimum flow to application point		mgd		ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process not included.
10.) Average flow to application point		mgd		ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process not included.
11.) Maximum flow to application point		mgd		ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process not included.
12.) Minimum chemical addition		mg/L					Input the dose that corresponds to the flow input above.
13.) Average chemical addition		mg/L					Input the dose that corresponds to the flow input above.
14.) Maximum chemical addition		mg/L					Input the dose that corresponds to the flow input above.
15.) Input Number of Equal Simultaneous Application Points		#					Input the dose that corresponds to the flow input above.
16.) Hours of addition per day		hr					Input the total number of hours that the chemical is fed during the day.
Application #3							
17.) Minimum flow to application point		mgd		ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process not included.
18.) Average flow to application point		mgd		ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process not included.
19.) Maximum flow to application point		mgd		ML/d			Input the flow that the selected dose will be applied to. Enter 0 if Unit Process not included.
20.) Minimum chemical addition		mg/L					Input the dose that corresponds to the flow input above.
21.) Average chemical addition		mg/L					Input the dose that corresponds to the flow input above.
22.) Maximum chemical addition		mg/L					Input the dose that corresponds to the flow input above.
23.) Input Number of Equal Simultaneous Application Points		each					Input the dose that corresponds to the flow input above.
24.) Hours of addition per day		hr					Input the total number of hours that the chemical is fed during the day.
CHEMICAL QUANTITIES AND FLOW							
Application Point #1 Chemical Usage:							
Minimum as "dry" chemical	4003.20	lb/d	1815.82	kg/d			
Average as "dry" chemical	4003.20	lb/d	1815.82	kg/d			
Maximum as "dry" chemical	12009.80	lb/d	5447.48	kg/d			
Minimum Plant Water Flow	27.80	gpm	105.23	L/min			
Average Plant Water Flow	27.80	gpm	105.23	L/min			
Maximum Plant Water Flow	83.40	gpm	315.70	L/min			
Chemical Metering Rates per Simultaneously Operating Pump							
Minimum at feed concentration	1668.00	gph	6314.07	L/h			
Average at feed concentration	1668.00	gph	6314.07	L/h			
Maximum at feed concentration	5004.00	gph	18942.20	L/h			
Calculate Chemical Metering Pump Flow Turndown	3.00						Should be < 20. If > = 20, proceed with caution
Associated Pump & Chemical Usage							
Minimum at feed concentration	1668.00	gph	6314.07	L/h			
Average at feed concentration	1668.00	gph	6314.07	L/h			
Maximum at feed concentration	5004.00	gph	18942.20	L/h			
Chemical Metering Pump Flow							
Turndown							

34.) Maximum Plant Water Flow Rate	1000	gpm	0.00	l/s		
35.) Maximum Plant Water Flow Rate (each)	83.40	gpm	0.00	l/s		
36.) Input Clear Distance Between Cycle Bins	10.00	ft	0.00	mm		
37.) Max Hopper Plant Water Flow Rate	100.00	gpm	378.54	l/min		
Flow Rate Needed for Max Flow Conditions	83.40	gpm	315.70	l/min	OKAY	
Calculate Number of Hoppers	1.00	#				Typically 1 for Silo system and 2 for other systems
Dry Capacity of Each Hopper	2000.00	lb	907.18	kg		Fixed
Hopper Length	5.33	ft	1624.58	mm	LFS	Fixed
Hopper Width	5.33	ft	1624.58	mm	WFS	Fixed
Height From Floor to Top of Feed System	17.29	ft	5289.99	mm	FSH	Fixed
38.) Input Clear Distance Around Hopper	3.00	ft	3.00	mm	CDH	Typically ≥ 3 ft
SOLUTION TANKS:						
Calculate Volume of Each Solution Tank	75.00	gal	283.81	L		
Calculate Volume of Solution Storage Required	10.03	cf	0.28	m ³	#T	
Number of Solution Tanks	1.00	#				
Calculate Solution Pad Dimensions	4.00	ft	1.08	mm	S10	Calculated for Silo system and square tank height
Solution Tank LengthWidth	2.75	ft	838.20	mm	TLW	Square tank for supersack/hopper system
Use this Tank Height (Liquid Height * 1.2)	2.00	ft	609.60	mm	STH	Verify tank height within the facility if indoors, typically 4' lower than the roof framing structure.
Calculate Number of Hours of Solution Storage Required At Max Flow and Max Dose	0.01	hrs				
Solution Tank Distance from Silo Wall	2.00	ft	609.60	mm	STCD	Fixed
Clear Distance from Pumps to Edge of Silo	4.56	ft	1390.65	mm	SPCD	
39.) Input Clear Distance Around Transfer Pumps for SuperSack System	4.00	ft	1,028.80	mm	CDP	Typically ≥ 3 ft
Transfer Pumps - Application #1						
Transfer Pump Type	Watson Marlow	Type				Fixed
Transfer Pump Model	SPX 50					
Number of Active Transfer Pumps	1.00	#				
Number of Standby Transfer Pumps	1.00	#				
Total Number of Transfer Pumps	2.00	#			#FP1	
Calculate Max Transfer Pump Flow Rate (each)	83.40	gpm	5.26	l/s		
Calculate Transfer Pump Brake Horsepower	5.50	hp	4.10	kW		
Calculate Transfer Pump Pad Length	2.88	ft	876.30	mm	FPL1	
Calculate Transfer Pump Pad Width	2.75	ft	838.20	mm	FPW1	
Calculate Transfer Pump Height	2.65	ft	807.72	mm	FPH1	
Transfer Pumps - Application #2						
Transfer Pump Type	Watson Marlow	Type				Fixed
Transfer Pump Model	NEMA 2	#				
Input Number of Active Transfer Pumps	0.00	#				
Input Number of Standby Transfer Pumps	0.00	#			#FP2	
Total Number of Transfer Pumps	0.00	#				

Calculate Max Transfer Pump Flow Rate (each)	0.00	gpm	0.00	l/s			
Calculate Transfer Pump Brake Horsepower	0.65	hp	0.48	kW			
Calculate Transfer Pump Pad Length	0.74	ft	225.55	mm	FPL2		
Calculate Transfer Pump Pad Width	0.76	ft	230.12	mm	FPW2		
Calculate Transfer Pump Height	0.43	ft	132.08	mm	FPH2		
Transfer Pumps - Application #3							
Transfer Pump Type	Walson Marlow	Type			Fixed		
Transfer Pump Model	NEMA 2	#					
Input Number of Active Transfer Pumps	0.00	#					
Input Number of Standby Transfer Pumps	0.00	#					
Total Number of Transfer Pumps	0.00	#			#FP3		
Calculate Max Transfer Pump Flow Rate (each)	0.00	gpm	0.00	l/s			
Calculate Transfer Pump Brake Horsepower	0.65	hp	0.48	kW			
Calculate Transfer Pump Pad Length	0.74	ft	225.55	mm	FPL3		
Calculate Transfer Pump Pad Width	0.76	ft	230.12	mm	FPW3		
Calculate Transfer Pump Height	0.43	ft	132.08	mm	FPH3		
FACILITY SIZING:							
40.) If this is a Supersack Application, is this Chemical Room Part of a Multiple Chemical Facility?	No	Y/N					
41.) Is this Chemical Room Considered the "Start Point" for this Chemical Facility?	No	Y/N					
42.) If this is Part of a Multiple Chemical Facility and is the "Start Point", Input the Summation of Total Number of Pumps from the Other Chemical Rooms Here	#						
43.) Input Common Chemical Access Corridor Width	6.00	ft		mm	CW		
44.) Is Corridor Covered?	Yes	Y/N					
45.) Is Chemical Facility Covered?	Yes	Y/N					
46.) Select Chemical Building for this Chemical	None						
CONTAINMENT AREA:							
Calculate Containment Area Length	140.00	ft	42672.00	mm	ICL		
Calculate Containment Area Width	19.21	ft	5853.68	mm	ICW		
47.) Optional: User Overwrite of Containment Area Width		ft	2,438.40	mm	CAD		
Calculate Containment Area Diameter		ft	#VALUE!	mm			
Calculate Fire Sprinkler Water Volume	10754.80	gal	40.71	m³			assumes 0.2 gpm/sf for 20 min
Calculate 120% of One Storage Tank Volume	90.00	gal	0.34	m³			
Calculate 30% of All Tank Volume	22.50	gal	0.09	m³			
Calculate 20 Minutes of Maximum Plant Water	1668.00	gal	6.31	m³			
Calculate Maximum Volume + Fire Flow Volume	1960.63	cf	47.03	m³			
Calculate Containment Wall Height (Including freeboard)	1.12	ft	340.68	mm			120% of 1 tank volume or 30% of all tank volume whichever is greater + fire flow volume + 6" freeboard
48.) Optional: User Overwrite of Containment Wall Height		ft	2,438.40	mm			
49.) Input Depth of Burial	0.00	ft	1,828.80	mm	DB		
50.) Input Cutback Slope	1.00	1					Cutback slope should be 1:1 for depth burial ≤ 5 ft, and at least 1:5:1 for depth of burial > 5 ft.
51.) Input Over Excavation Depth	1.00	ft	609.60	mm	OEXD		
Mechanical Sizing Requirements:							
Pipe Name	Input Velocity	Unit (English)	Input Velocity	Unit (Metric)	Standard Pipe Size	Unit (English)	Nominal Pipe Size
Chemical Transfer Pump Suction Header Piping	2.00	fps	0.61	m/s	4.50	in	100.00
Chemical Transfer Pump Discharge Header Piping	6.00	fps	1.83	m/s	2.50	in	50.00
Plant Water Pipe	5.00	fps	4.83	m/s	1.00	in	25.00
Mechanical Material Requirements:							
Pipe Name	Pipe ID	Installation Type	Pipe Material	Pipe Lining Material	Pipe Coating Material	Pipe Length	# Elbows
Chemical Transfer Pump Suction Header Piping	LCSH	Exposed	PVC	NA	NA	159.21	8
Chemical Transfer Pump Discharge Header Piping	LCDH	Exposed	FRP	NA	NA	159.21	12
Plant Water Pipe	PW	Exposed	PVC	NA	NA	19.98	2
Electrical User Inputs and Sizing Requirements:							
52.) Is this a "Critical" Facility (requiring standby power)?	No	Y/N					
53.) Is there SWGR?	No						
Electrical Equipment Lengths:							
Item	Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 50hp	MCC Spaces for Breakers	Total MCC Spaces
Transfer Pumps - Application #1	2	5.50	No	4.00	0.00	0.00	
Transfer Pumps - Application #2	0	0.65	No	0.00	0.00	0.00	
Transfer Pumps - Application #3	0	0.65	No	0.00	0.00	0.00	
Hoppers	1	1.00	No	2.00	0.00	0.00	
TOTAL:				6.00	0.00	0.00	6.00
Electrical Equipment Widths:							
Equipment	Depth (ft)						
MCC	1.67						
Small AFD's	0.00						
Large AFD's	0.00						
Switchgear	0.00						
Maximum Depth	1.67						
Clear Distances:							
Clear Distance	Width	Length					
CD1		3.00	Typically 3 feet				
CD2		1.00	Typically 1 foot				
CD3		0.00	Typically Zero				
CD4		0.00	Typically Zero				
CD5		0.00	Typically Zero				
CD6	0.00		If there is no switchgear, this distance will be Zero.				
CD7	3.00		Typically 3 feet				
Contingency Length		0.00	Typically Zero				
Electric Room Length (ft):							
CD1		3.00					
MCC		8.33					
CD2		1.00					
Small AFD's		0.00					
CD3		0.00					
Large AFD's		0.00					
CD4		0.00					
Switchgear		0.00					
CD5		0.00					
Contingency		0.00					
Total Length		12.33					

Estimating Dimensions:	Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Comment	Red Flag
Containment Area:							
Site							
Containment Area Depth	0.00	ft	0.00	mm			
Slab On Grade	9.00	ft	2743.60	mm			
Containment Area Length	140.00	ft	42672.00	mm		Model based on 8"	
Containment Area Width	19.21	ft	5853.68	mm			
Containment Area Slab on Grade Length	141.33	ft	43078.40	mm			
Containment Area Slab on Grade Width	20.54	ft	6260.08	mm			
Containment Area Excavation Length	145.33	ft	44297.60	mm			
Containment Area Excavation Width	24.54	ft	7479.28	mm			
Containment Wall Height	1.12	ft	340.66	mm			
Slab on Grade Thickness	9.00	in	228.60	mm		Model based on 9"	
Slab on Grade Thickness	0.75	ft	228.60	mm			
Containment Wall Thickness	8.00	in	203.20	mm		Model based on 8"	
Containment Wall Thickness	0.67	ft	203.20	mm			
Corridor							
Corridor Area Length	140.00	ft	42672.00	mm			
Corridor Area Width	6.00	ft	1828.80	mm			
Corridor Area Slab on Grade Length	141.33	ft	43078.40	mm			
Corridor Area Slab on Grade Width	8.00	ft	2438.40	mm			
Corridor Area Excavation Length	145.33	ft	44297.60	mm			
Corridor Area Excavation Width	12.00	ft	3657.60	mm			
Electrical Room							
Electrical Area Length	13.67	ft	4165.60	mm			
Electrical Area Width	6.00	ft	1828.80	mm			
Electrical Area Slab on Grade Length	15.67	ft	4775.20	mm			
Electrical Area Slab on Grade Width	8.00	ft	2438.40	mm			
Electrical Area Excavation Length	19.67	ft	5994.40	mm			
Electrical Area Excavation Width	12.00	ft	3657.60	mm			
Slab on Grade Thickness	12.00	in	304.80	mm		Model based on 12"	
Slab on Grade Thickness	1.00	ft	304.80	mm			
Walls							
Height = FBD	10.00	ft				Fixed	
Concrete Thickness	8.00	in	203.20	mm		Model based on 8"	
Concrete Thickness	0.67	ft	203.20	mm			
Containment + Corridor Excavation Area (Excludes Electrical Room)	3528.70	ft	1075547.78	mm			
Excavation Depth	1.75	ft	533.40	mm			
Covered Building Area	3528.70	sf	327.83	m2			
Material Quantities:							
Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
SITWORK:							
Site							
Excavation	0.00	CY	0.00	m3	\$8.35	\$0	
Imported Structural Backfill	0.00	CY	0.00	m3	\$48.10	\$0	
Native Backfill	0.00	CY	0.00	m3	\$7.80	\$0	
Haul Excess	0.00	CY	0.00	m3	\$7.80	\$0	
Supersack:							
Excavation	812.54	CY	621.23	m3	\$8.35	\$5,158	
Imported Structural Backfill	788.70	CY	601.48	m3	\$48.10	\$37,840	
Native Backfill	585.48	CY	447.83	m3	\$7.80	\$4,569	
Haul Excess	227.06	CY	173.60	m3	\$7.80	\$1,772	
Electrical Room:							
Excavation	21.15	CY	18.17	m3	\$8.35	\$134	
Imported Structural Backfill	17.48	CY	13.37	m3	\$48.10	\$841	
Native Backfill	3.59	CY	2.75	m3	\$7.80	\$28	
Haul Excess	17.56	CY	13.43	m3	\$7.80	\$137	
Allowance for Misc Items	5%				\$50,479.36	\$2,524	
Subtotal						\$53,003	
CONCRETE:							
Site							
Concrete Foundation	0.00	CY	0.00	m3	\$393.62	\$0	
Concrete Containment Walls	0.00	CY	0.00	m3	\$704.01	\$0	
Supersack:							
Slab on Grade:							
Containment Area	80.63	CY	61.65	m3	\$393.62	\$31,739	
Corridor	31.41	CY	24.01	m3	\$393.62	\$12,363	
Containment Walls	8.79	CY	6.72	m3	\$704.01	\$48.166	
Hopper Pads	1.05	CY	0.80	m3	\$356.31	\$375	
Metering Pump Pads	0.59	CY	0.45	m3	\$356.31	\$209	
Electrical Room:							
Slab on Grade	4.64	CY	3.55	m3	\$393.62	\$1,827	
Allowance for Misc Items	5%				\$52,698.32	\$2,635	
Subtotal						\$55,333	
MASONRY:							
Site							
Containment Area	0.00	SF	0.00	m2	\$19.55	\$0	
Containment Area	2902.75	SF	269.67	m2	\$156.08	\$453,071	
Corridor	1130.67	SF	105.04	m2	\$156.08	\$176,478	
Electrical Room	125.33	SF	11.84	m2	\$156.08	\$19,562	
Subtotal	4158.75					\$649,111	
METALS:							
Silo Containment Area	2	EA			\$7,804.16	\$15,608	
Containment Area	1	EA			\$1,873.00	\$1,873	
Corridor	10%				\$17,481.32	\$1,746	
Electrical Room						\$19,229	
Subtotal							

EQUIPMENT:							Budgetary Quote: (CPES will automatically add Installation Fact)
Silo(s)	0	EA				\$523,541.18	\$0
Hopper Feeder System	1	EA				\$202,347.71	\$203,348
Transfer Pump- Application 1	2	EA				\$19,865.51	\$39,731
Transfer Pump- Application 2	0	EA				\$7,508.22	\$0
Transfer Pump- Application 3	0	EA				\$7,508.22	\$0
Allowance for Misc Items	10%						\$24,308
						\$243,078.72	
Subtotal							\$267,387
MECHANICAL:							
Pipe							
Chemical Transfer Pump Suction Header Piping-LCSH (4.5-inch, Exposed, PVC)	159.21	LF	48.53	m		\$29.80	\$4,713
Chemical Transfer Pump Discharge Header Piping-LCDH (2.5-inch, Exposed, FRP)	159.21	LF	48.53	m		\$23.06	\$3,672
Plant Water Pipe-PW (1-inch, Exposed, PVC)	19.98	LF	6.09	m		\$12.29	\$245
Elbows							
Chemical Transfer Pump Suction Header Piping-LCSH (4.5-inch, Exposed, PVC)	8	EA				\$90.96	\$728
Chemical Transfer Pump Discharge Header Piping-LCDH (2.5-inch, Exposed, FRP)	12	EA				\$198.74	\$2,385
Plant Water Pipe-PW (1-inch, Exposed, PVC)	2	EA				\$9.43	\$19
Tees							
Chemical Transfer Pump Suction Header Piping-LCSH (4.5-inch, Exposed, PVC)	2	EA				\$133.95	\$268
Chemical Transfer Pump Discharge Header Piping-LCDH (2.5-inch, Exposed, FRP)	1	EA				\$200.66	\$290
Plant Water Pipe-PW (1-inch, Exposed, PVC)	0	EA				\$9.81	\$0
Valves							
Chemical Transfer Pump Suction Header Piping-LCSH (4.5-inch, Exposed, PVC, V-902, Diaphragm)	2	EA				\$2,491.50	\$4,983
Chemical Transfer Pump Discharge Header Piping-LCDH (2.5-inch, Exposed, FRP, V-902, Diaphragm)	2	EA				\$1,384.17	\$2,768
Plant Water Pipe-PW (1-inch, Exposed, PVC, V-902, Diaphragm)	1	EA				\$563.67	\$554
Allowance for Misc Items	10%					\$20,624.11	\$2,062
Subtotal							\$22,687
ELECTRICAL:							
# MCC Sections	5	#				\$8,044.98	\$40,225
Switchgear	0	EA				\$37,006.01	\$0
Adjustable Frequency Drives							
Transfer Pumps - Application #1	0	EA				\$8,984.88	\$0
Transfer Pumps - Application #2	0	EA				\$8,388.81	\$0
Transfer Pumps - Application #3	0	EA				\$8,388.81	\$0
Hoppers	0	EA				\$8,431.62	\$0
Electrical Conduit & Wire	420.00	LF	128.02	m		\$11.70	\$4,747
Allowance for Misc Items	10%					\$44,971.40	\$4,497
Subtotal							\$49,469
USER DEFINED ESTIMATE ITEMS:							
Item 1 Description	0.00		0.00			0.00	
Item 2 Description	0.00		0.00			0.00	
Item 3 Description	0.00		0.00			0.00	
Item 4 Description	0.00		0.00			0.00	
Item 5 Description	0.00		0.00			0.00	
Item 6 Description	0.00		0.00			0.00	
Item 7 Description	0.00		0.00			0.00	
Item 8 Description	0.00		0.00			0.00	
Item 9 Description	0.00		0.00			0.00	
Item 10 Description	0.00		0.00			0.00	
Item 11 Description	0.00		0.00			0.00	
Item 12 Description	0.00		0.00			0.00	
Item 13 Description	0.00		0.00			0.00	
Item 14 Description	0.00		0.00			0.00	
Item 15 Description	0.00		0.00			0.00	
Subtotal							\$0
Subtotal							\$1,116,219
ALLOWANCES:							
Finishes Allowance	2.00%					\$1,240,243	\$24,805
EC Allowance	2.00%					\$1,240,243	\$24,805
Mechanical Allowance	4.00%					\$1,240,243	\$49,610
Electrical Allowance	2.00%					\$1,240,243	\$24,805
							Facility Cost Name
Facility Cost	4,159	Building SF				\$298.22	\$1,240,243
Facility Cost with Standard Additional Project Costs Added	4,159	Building SF				\$298.22	CFDFC01
Facility Cost with Standard Additional Project Costs and Contractor Markups Added	4,159	Building SF				\$443.92	\$1,846,145
Facility Cost, Contractor Markup, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	4,159	Building SF				\$435.50	CFDFC02
Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	4,159	Building SF				\$435.50	CFDFC03
							CFDFC04
							CFDFC05
							CFDFC06

LIQUID CHEM

3/4/2017
12:21 PM

Liquid Chemical mgchlor

Printed by

Liquid Chemical Storage & Feed - (Aluminum Sulfate (Alum))																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Located in Stand Alone Chemical Building																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Is This Facility Included in My Project? Yes																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
<table border="1"> <tr> <td>Is the Facility Storage Only (no metering pumps)?</td> <td>No</td> <td>Y/N</td> <td>Overwrite Value</td> <td colspan="3"></td> </tr> <tr> <td>Select Chemical</td> <td>Aluminum Sulfate (Alum)</td> <td>mgchloride</td> <td>Select "Other" from the drop down list if using a different chemical.</td> <td>ERROR: Cell C7 should be 'Other', or C7 cell should be</td> <td colspan="2"></td> </tr> <tr> <td>Percent Active Chemical % w/w</td> <td>75.00%</td> <td>75.00%</td> <td>This is the intended feed strength to the process. Inputting a value in the yellow cell overwrites the cell in column "C"</td> <td colspan="3"></td> </tr> <tr> <td>Active Chemical Form for Dosage Basis</td> <td>mgcl</td> <td>mgcl</td> <td>Inputting a value in the yellow cell overwrites the cell in column "C"</td> <td colspan="3"></td> </tr> <tr> <td>Bulk Chemical Specific Gravity</td> <td>3.00</td> <td>3.00</td> <td>Inputting a value in the yellow cell overwrites the cell in column "C"</td> <td colspan="3"></td> </tr> <tr> <td>Active lb/gal solution</td> <td>18.77</td> <td>lb/gal</td> <td>2246.54</td> <td>kg/m3</td> <td colspan="2"></td> </tr> <tr> <td>Process User Inputs:</td> <td>Value (English)</td> <td>Unit (English)</td> <td>Value (Metric)</td> <td>Unit (Metric)</td> <td>Name</td> <td>Red Flags</td> </tr> <tr> <td colspan="7">FLOW AND CHEMICAL ADDITION</td> </tr> <tr> <td>Application #1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>1.) Minimum flow to application point</td> <td>4.00</td> <td>mgd</td> <td>16.14</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose will be applied to.</td> </tr> <tr> <td>2.) Average flow to application point</td> <td>4.00</td> <td>mgd</td> <td>16.14</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose will be applied to.</td> </tr> <tr> <td>3.) Maximum flow to application point</td> <td>12.00</td> <td>mgd</td> <td>48.42</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose will be applied to.</td> </tr> <tr> <td>4.) Minimum chemical addition</td> <td>60.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the flow input above.</td> </tr> <tr> <td>5.) Average chemical addition</td> <td>60.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the flow input above.</td> </tr> <tr> <td>6.) Maximum chemical addition</td> <td>50.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the flow input above.</td> </tr> <tr> <td>7.) Input Number of Equal Simultaneous Application Points</td> <td>1</td> <td>#</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>8.) Hours of addition per day</td> <td>10.00</td> <td>hr</td> <td></td> <td></td> <td></td> <td>Input the total number of hours that the chemical is fed during the day.</td> </tr> <tr> <td>Application #2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>9.) Minimum flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.</td> </tr> <tr> <td>10.) Average flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.</td> </tr> <tr> <td>11.) Maximum flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.</td> </tr> <tr> <td>12.) Minimum chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the flow input above.</td> </tr> <tr> <td>13.) Average chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the flow input above.</td> </tr> <tr> <td>14.) Maximum chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the flow input above.</td> </tr> <tr> <td>15.) Input Number of Equal Simultaneous Application Points</td> <td>0</td> <td>#</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>16.) Hours of addition per day</td> <td>0.00</td> <td>hr</td> <td></td> <td></td> <td></td> <td>Input the total number of hours that the chemical is fed during the day.</td> </tr> <tr> <td>Application #3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>17.) Minimum flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.</td> </tr> <tr> <td>18.) Average flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.</td> </tr> <tr> <td>19.) Maximum flow to application point</td> <td>0.00</td> <td>mgd</td> <td>0.00</td> <td>ML/d</td> <td></td> <td>Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.</td> </tr> <tr> <td>20.) Minimum chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the flow input above.</td> </tr> <tr> <td>21.) Average chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the flow input above.</td> </tr> <tr> <td>22.) Maximum chemical addition</td> <td>0.00</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td>Input the dose that corresponds to the flow input above.</td> </tr> <tr> <td>23.) Input Number of Equal Simultaneous Application Points</td> <td>0</td> <td>#</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>24.) Hours of addition per day</td> <td>0.00</td> <td>hr</td> <td></td> <td></td> <td></td> <td>Input the total number of hours that the chemical is fed during the day.</td> </tr> <tr> <td colspan="7">CHEMICAL QUANTITIES AND FLOW</td> </tr> <tr> <td colspan="7">Application Point #1 Chemical Usage</td> </tr> <tr> <td>Minimum as "dry" chemical</td> <td>695.00</td> <td>lb/d</td> <td>315.25</td> <td>kg/d</td> <td colspan="2"></td> </tr> <tr> <td>Average as "dry" chemical</td> <td>695.00</td> <td>lb/d</td> <td>315.25</td> <td>kg/d</td> <td colspan="2"></td> </tr> <tr> <td>Maximum as "dry" chemical</td> <td>2085.00</td> <td>lb/d</td> <td>945.74</td> <td>kg/d</td> <td colspan="2"></td> </tr> <tr> <td colspan="7">Chemical Metering Rates per Simultaneously Operating Pump</td> </tr> <tr> <td>Minimum at feed concentration</td> <td>3.70</td> <td>gph</td> <td>14.02</td> <td>L/h</td> <td colspan="2"></td> </tr> <tr> <td>Average at feed concentration</td> <td>3.70</td> <td>gph</td> <td>14.02</td> <td>L/h</td> <td colspan="2"></td> </tr> <tr> <td>Maximum at feed concentration</td> <td>11.11</td> <td>gph</td> <td>42.06</td> <td>L/h</td> <td colspan="2"></td> </tr> <tr> <td>Calculate Chemical Metering Pump Flow Turndown</td> <td>3.00</td> <td>1</td> <td></td> <td></td> <td colspan="2">Should be < 20:1. If ≥ 20:1 proceed with caution.</td> </tr> <tr> <td colspan="7">Application Point #1 Pumping Parameters</td> </tr> <tr> <td>Minimum at feed concentration</td> <td>2.00</td> <td>gpm</td> <td>0.00</td> <td>L/s</td> <td colspan="2"></td> </tr> <tr> <td>Average at feed concentration</td> <td>2.00</td> <td>gpm</td> <td>0.00</td> <td>L/s</td> <td colspan="2"></td> </tr> <tr> <td>Maximum at feed concentration</td> <td>6.00</td> <td>gpm</td> <td>0.00</td> <td>L/s</td> <td colspan="2"></td> </tr> <tr> <td>Minimum at feed concentration</td> <td>0.00</td> <td>gpm</td> <td>0.00</td> <td>L/s</td> <td colspan="2"></td> </tr> <tr> <td>Maximum at feed concentration</td> <td>1.00</td> <td>gpm</td> <td>0.00</td> <td>L/s</td> <td colspan="2"></td> </tr> <tr> <td>Minimum at feed concentration</td> <td>0.00</td> <td>gpm</td> <td>0.00</td> <td>L/s</td> <td colspan="2"></td> </tr> <tr> <td>Maximum at feed concentration</td> <td>0.00</td> <td>gpm</td> <td>0.00</td> <td>L/s</td> <td colspan="2"></td> </tr> <tr> <td>Minimum at feed concentration</td> <td>0.00</td> <td>gpm</td> <td>0.00</td> <td>L/s</td> <td colspan="2"></td> </tr> <tr> <td>Maximum at feed concentration</td> <td>0.00</td> <td>gpm</td> <td>0.00</td> <td>L/s</td> <td colspan="2"></td> </tr> <tr> <td colspan="7">Application Point #1 Chemical Usage</td> </tr> <tr> <td>Minimum as "dry" chemical</td> <td>1.00</td> <td>lb/d</td> <td>0.00</td> <td>kg/d</td> <td colspan="2"></td> </tr> <tr> <td>Average as "dry" chemical</td> <td>2.00</td> <td>lb/d</td> <td>0.00</td> <td>kg/d</td> <td colspan="2"></td> </tr> <tr> <td>Maximum as "dry" chemical</td> <td>2.00</td> <td>lb/d</td> <td>0.00</td> <td>kg/d</td> <td colspan="2"></td> </tr> <tr> <td colspan="7">Chemical Metering Rates per Simultaneously Operating Pump</td> </tr> <tr> <td>Minimum at feed concentration</td> <td>1.00</td> <td>gph</td> <td>0.00</td> <td>L/h</td> <td colspan="2"></td> </tr> <tr> <td>Average at feed concentration</td> <td>1.00</td> <td>gph</td> <td>0.00</td> <td>L/h</td> <td colspan="2"></td> </tr> <tr> <td>Maximum at feed concentration</td> <td>4.00</td> <td>gph</td> <td>0.00</td> <td>L/h</td> <td colspan="2"></td> </tr> <tr> <td>Calculate Chemical Metering Pump Flow Turndown</td> <td>1.00</td> <td>1</td> <td></td> <td></td> <td colspan="2"></td> </tr> </table>							Is the Facility Storage Only (no metering pumps)?	No	Y/N	Overwrite Value				Select Chemical	Aluminum Sulfate (Alum)	mgchloride	Select "Other" from the drop down list if using a different chemical.	ERROR: Cell C7 should be 'Other', or C7 cell should be			Percent Active Chemical % w/w	75.00%	75.00%	This is the intended feed strength to the process. Inputting a value in the yellow cell overwrites the cell in column "C"				Active Chemical Form for Dosage Basis	mgcl	mgcl	Inputting a value in the yellow cell overwrites the cell in column "C"				Bulk Chemical Specific Gravity	3.00	3.00	Inputting a value in the yellow cell overwrites the cell in column "C"				Active lb/gal solution	18.77	lb/gal	2246.54	kg/m3			Process User Inputs:	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags	FLOW AND CHEMICAL ADDITION							Application #1							1.) Minimum flow to application point	4.00	mgd	16.14	ML/d		Input the flow that the selected dose will be applied to.	2.) Average flow to application point	4.00	mgd	16.14	ML/d		Input the flow that the selected dose will be applied to.	3.) Maximum flow to application point	12.00	mgd	48.42	ML/d		Input the flow that the selected dose will be applied to.	4.) Minimum chemical addition	60.00	mg/L				Input the dose that corresponds to the flow input above.	5.) Average chemical addition	60.00	mg/L				Input the dose that corresponds to the flow input above.	6.) Maximum chemical addition	50.00	mg/L				Input the dose that corresponds to the flow input above.	7.) Input Number of Equal Simultaneous Application Points	1	#					8.) Hours of addition per day	10.00	hr				Input the total number of hours that the chemical is fed during the day.	Application #2							9.) Minimum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.	10.) Average flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.	11.) Maximum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.	12.) Minimum chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.	13.) Average chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.	14.) Maximum chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.	15.) Input Number of Equal Simultaneous Application Points	0	#					16.) Hours of addition per day	0.00	hr				Input the total number of hours that the chemical is fed during the day.	Application #3							17.) Minimum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.	18.) Average flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.	19.) Maximum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.	20.) Minimum chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.	21.) Average chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.	22.) Maximum chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.	23.) Input Number of Equal Simultaneous Application Points	0	#					24.) Hours of addition per day	0.00	hr				Input the total number of hours that the chemical is fed during the day.	CHEMICAL QUANTITIES AND FLOW							Application Point #1 Chemical Usage							Minimum as "dry" chemical	695.00	lb/d	315.25	kg/d			Average as "dry" chemical	695.00	lb/d	315.25	kg/d			Maximum as "dry" chemical	2085.00	lb/d	945.74	kg/d			Chemical Metering Rates per Simultaneously Operating Pump							Minimum at feed concentration	3.70	gph	14.02	L/h			Average at feed concentration	3.70	gph	14.02	L/h			Maximum at feed concentration	11.11	gph	42.06	L/h			Calculate Chemical Metering Pump Flow Turndown	3.00	1			Should be < 20:1. If ≥ 20:1 proceed with caution.		Application Point #1 Pumping Parameters							Minimum at feed concentration	2.00	gpm	0.00	L/s			Average at feed concentration	2.00	gpm	0.00	L/s			Maximum at feed concentration	6.00	gpm	0.00	L/s			Minimum at feed concentration	0.00	gpm	0.00	L/s			Maximum at feed concentration	1.00	gpm	0.00	L/s			Minimum at feed concentration	0.00	gpm	0.00	L/s			Maximum at feed concentration	0.00	gpm	0.00	L/s			Minimum at feed concentration	0.00	gpm	0.00	L/s			Maximum at feed concentration	0.00	gpm	0.00	L/s			Application Point #1 Chemical Usage							Minimum as "dry" chemical	1.00	lb/d	0.00	kg/d			Average as "dry" chemical	2.00	lb/d	0.00	kg/d			Maximum as "dry" chemical	2.00	lb/d	0.00	kg/d			Chemical Metering Rates per Simultaneously Operating Pump							Minimum at feed concentration	1.00	gph	0.00	L/h			Average at feed concentration	1.00	gph	0.00	L/h			Maximum at feed concentration	4.00	gph	0.00	L/h			Calculate Chemical Metering Pump Flow Turndown	1.00	1				
Is the Facility Storage Only (no metering pumps)?	No	Y/N	Overwrite Value																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Select Chemical	Aluminum Sulfate (Alum)	mgchloride	Select "Other" from the drop down list if using a different chemical.	ERROR: Cell C7 should be 'Other', or C7 cell should be																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Percent Active Chemical % w/w	75.00%	75.00%	This is the intended feed strength to the process. Inputting a value in the yellow cell overwrites the cell in column "C"																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Active Chemical Form for Dosage Basis	mgcl	mgcl	Inputting a value in the yellow cell overwrites the cell in column "C"																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Bulk Chemical Specific Gravity	3.00	3.00	Inputting a value in the yellow cell overwrites the cell in column "C"																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Active lb/gal solution	18.77	lb/gal	2246.54	kg/m3																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Process User Inputs:	Value (English)	Unit (English)	Value (Metric)	Unit (Metric)	Name	Red Flags																																																																																																																																																																																																																																																																																																																																																																																																																																																																
FLOW AND CHEMICAL ADDITION																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Application #1																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
1.) Minimum flow to application point	4.00	mgd	16.14	ML/d		Input the flow that the selected dose will be applied to.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
2.) Average flow to application point	4.00	mgd	16.14	ML/d		Input the flow that the selected dose will be applied to.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
3.) Maximum flow to application point	12.00	mgd	48.42	ML/d		Input the flow that the selected dose will be applied to.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
4.) Minimum chemical addition	60.00	mg/L				Input the dose that corresponds to the flow input above.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
5.) Average chemical addition	60.00	mg/L				Input the dose that corresponds to the flow input above.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
6.) Maximum chemical addition	50.00	mg/L				Input the dose that corresponds to the flow input above.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
7.) Input Number of Equal Simultaneous Application Points	1	#																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
8.) Hours of addition per day	10.00	hr				Input the total number of hours that the chemical is fed during the day.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Application #2																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
9.) Minimum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
10.) Average flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
11.) Maximum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
12.) Minimum chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
13.) Average chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
14.) Maximum chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
15.) Input Number of Equal Simultaneous Application Points	0	#																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
16.) Hours of addition per day	0.00	hr				Input the total number of hours that the chemical is fed during the day.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Application #3																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
17.) Minimum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
18.) Average flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
19.) Maximum flow to application point	0.00	mgd	0.00	ML/d		Input the flow that the selected dose will be applied to. Enter 0 if Unit Process is not included.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
20.) Minimum chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
21.) Average chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
22.) Maximum chemical addition	0.00	mg/L				Input the dose that corresponds to the flow input above.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
23.) Input Number of Equal Simultaneous Application Points	0	#																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
24.) Hours of addition per day	0.00	hr				Input the total number of hours that the chemical is fed during the day.																																																																																																																																																																																																																																																																																																																																																																																																																																																																
CHEMICAL QUANTITIES AND FLOW																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Application Point #1 Chemical Usage																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Minimum as "dry" chemical	695.00	lb/d	315.25	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Average as "dry" chemical	695.00	lb/d	315.25	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Maximum as "dry" chemical	2085.00	lb/d	945.74	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Chemical Metering Rates per Simultaneously Operating Pump																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Minimum at feed concentration	3.70	gph	14.02	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Average at feed concentration	3.70	gph	14.02	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Maximum at feed concentration	11.11	gph	42.06	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Calculate Chemical Metering Pump Flow Turndown	3.00	1			Should be < 20:1. If ≥ 20:1 proceed with caution.																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Application Point #1 Pumping Parameters																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Minimum at feed concentration	2.00	gpm	0.00	L/s																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Average at feed concentration	2.00	gpm	0.00	L/s																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Maximum at feed concentration	6.00	gpm	0.00	L/s																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Minimum at feed concentration	0.00	gpm	0.00	L/s																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Maximum at feed concentration	1.00	gpm	0.00	L/s																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Minimum at feed concentration	0.00	gpm	0.00	L/s																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Maximum at feed concentration	0.00	gpm	0.00	L/s																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Minimum at feed concentration	0.00	gpm	0.00	L/s																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Maximum at feed concentration	0.00	gpm	0.00	L/s																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Application Point #1 Chemical Usage																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Minimum as "dry" chemical	1.00	lb/d	0.00	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Average as "dry" chemical	2.00	lb/d	0.00	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Maximum as "dry" chemical	2.00	lb/d	0.00	kg/d																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Chemical Metering Rates per Simultaneously Operating Pump																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Minimum at feed concentration	1.00	gph	0.00	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Average at feed concentration	1.00	gph	0.00	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Maximum at feed concentration	4.00	gph	0.00	L/h																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Calculate Chemical Metering Pump Flow Turndown	1.00	1																																																																																																																																																																																																																																																																																																																																																																																																																																																																				

Older Version of Information		400	600	900	1200	1500	1800	2100	2400	2700	3000	3300	3600	3900	4200	4500	4800	5100	5400	5700	6000	6300	6600	6900	7200	7500	7800	8100	8400	8700	9000	9300	9600	9900	10200	10500	10800	11100	11400	11700	12000	12300	12600	12900	13200	13500	13800	14100	14400	14700	15000	15300	15600	15900	16200	16500	16800	17100	17400	17700	18000	18300	18600	18900	19200	19500	19800	20100	20400	20700	21000	21300	21600	21900	22200	22500	22800	23100	23400	23700	24000	24300	24600	24900	25200	25500	25800	26100	26400	26700	27000	27300	27600	27900	28200	28500	28800	29100	29400	29700	30000	30300	30600	30900	31200	31500	31800	32100	32400	32700	33000	33300	33600	33900	34200	34500	34800	35100	35400	35700	36000	36300	36600	36900	37200	37500	37800	38100	38400	38700	39000	39300	39600	39900	40200	40500	40800	41100	41400	41700	42000	42300	42600	42900	43200	43500	43800	44100	44400	44700	45000	45300	45600	45900	46200	46500	46800	47100	47400	47700	48000	48300	48600	48900	49200	49500	49800	50100	50400	50700	51000	51300	51600	51900	52200	52500	52800	53100	53400	53700	54000	54300	54600	54900	55200	55500	55800	56100	56400	56700	57000	57300	57600	57900	58200	58500	58800	59100	59400	59700	60000	60300	60600	60900	61200	61500	61800	62100	62400	62700	63000	63300	63600	63900	64200	64500	64800	65100	65400	65700	66000	66300	66600	66900	67200	67500	67800	68100	68400	68700	69000	69300	69600	69900	70200	70500	70800	71100	71400	71700	72000	72300	72600	72900	73200	73500	73800	74100	74400	74700	75000	75300	75600	75900	76200	76500	76800	77100	77400	77700	78000	78300	78600	78900	79200	79500	79800	80100	80400	80700	81000	81300	81600	81900	82200	82500	82800	83100	83400	83700	84000	84300	84600	84900	85200	85500	85800	86100	86400	86700	87000	87300	87600	87900	88200	88500	88800	89100	89400	89700	90000	90300	90600	90900	91200	91500	91800	92100	92400	92700	93000	93300	93600	93900	94200	94500	94800	95100	95400	95700	96000	96300	96600	96900	97200	97500	97800	98100	98400	98700	99000	99300	99600	99900	100200	100500	100800	101100	101400	101700	102000	102300	102600	102900	103200	103500	103800	104100	104400	104700	105000	105300	105600	105900	106200	106500	106800	107100	107400	107700	108000	108300	108600	108900	109200	109500	109800	110100	110400	110700	111000	111300	111600	111900	112200	112500	112800	113100	113400	113700	114000	114300	114600	114900	115200	115500	115800	116100	116400	116700	117000	117300	117600	117900	118200	118500	118800	119100	119400	119700	120000	120300	120600	120900	121200	121500	121800	122100	122400	122700	123000	123300	123600	123900	124200	124500	124800	125100	125400	125700	126000	126300	126600	126900	127200	127500	127800	128100	128400	128700	129000	129300	129600	129900	130200	130500	130800	131100	131400	131700	132000	132300	132600	132900	133200	133500	133800	134100	134400	134700	135000	135300	135600	135900	136200	136500	136800	137100	137400	137700	138000	138300	138600	138900	139200	139500	139800	140100	140400	140700	141000	141300	141600	141900	142200	142500	142800	143100	143400	143700	144000	144300	144600	144900	145200	145500	145800	146100	146400	146700	147000	147300	147600	147900	148200	148500	148800	149100	149400	149700	150000	150300	150600	150900	151200	151500	151800	152100	152400	152700	153000	153300	153600	153900	154200	154500	154800	155100	155400	155700	156000	156300	156600	156900	157200	157500	157800	158100	158400	158700	159000	159300	159600	159900	160200	160500	160800	161100	161400	161700	162000	162300	162600	162900	163200	163500	163800	164100	164400	164700	165000	165300	165600	165900	166200	166500	166800	167100	167400	167700	168000	168300	168600	168900	169200	169500	169800	170100	170400	170700	171000	171300	171600	171900	172200	172500	172800	173100	173400	173700	174000	174300	174600	174900	175200	175500	175800	176100	176400	176700	177000	177300	177600	177900	178200	178500	178800	179100	179400	179700	180000	180300	180600	180900	181200	181500	181800	182100	182400	182700	183000	183300	183600	183900	184200	184500	184800	185100	185400	185700	186000	186300	186600	186900	187200	187500	187800	188100	188400	188700	189000	189300	189600	189900	190200	190500	190800	191100	191400	191700	192000	192300	192600	192900	193200	193500	193800	194100	194400	194700	195000	195300	195600	195900	196200	196500	196800	197100	197400	197700	198000	198300	198600	198900	199200	199500	199800	200100	200400	200700	201000	201300	201600	201900	202200	202500	202800	203100	203400	203700	204000	204300	204600	204900	205200	205500	205800	206100	206400	206700	207000	207300	207600	207900	208200	208500	208800	209100	209400	209700	210000	210300	210600	210900	211200	211500	211800	212100	212400	212700	213000	213300	213600	213900	214200	214500	214800	215100	215400	215700	216000	216300	216600	216900	217200	217500	217800	218100	218400	218700	219000	219300	219600	219900	220200	220500	220800	221100	221400	221700	222000	222300	222600	222900	223200	223500	223800	224100	224400	224700	225000	225300	225600	225900	226200	226500	226800	227100	227400	227700	228000	228300	228600	228900	229200	229500	229800	230100	230400	230700	231000	231300	231600	231900	232200	232500	232800	233100	233400	233700	234000	234300	234600	234900	235200	235500	235800	236100	236400	236700	237000	237300	237600	237900	238200	238500	238800	239100	239400	239700	240000	240300	240600	240900	241200	241500	241800	242100	242400	242700	243000	243300	243600	243900	244200	244500	244800	245100	245400	245700	246000	246300	246600	246900	247200	247500	247800	248100	248400	248700	249000	249300	249600	249900	250200	250500	250800	251100	251400	251700	252000	252300	252600	252900	253200	253500	253800	254100	254400	254700	255000	255300	255600	255900	256200	256500	256800	257100	257400	257700	258000	258300	258600	258900	259200	259500	259800	260100	260400	260700	261000	261300	261600	261900	262200	262500	262800	263100	263400	263700	264000	264300	264600	264900	265200	265500	265800	266100	266400	266700	267000	267300	267600	267900	268200	268500	268800	269100	269400	269700	270000	270300	270600	270900	271200	271500	271800	272100	272400	272700	273000	273300	273600	273900	274200	274500	274800	275100	275400	275700	276000	276300	276600	276900	277200	277500	277800	278100	278400	278700	279000	279300	279600	279900	280200	280500	280800	281100	281400	281700	282000	282300	282600	282900	283200	283500	283800	284100	284400	284700	285000	285300	285600	285900	286200	286500	286800	287100	287400	287700	288000	288300	288600	288900	289200	289500	289800	290100	290400	290700	291000	291300	291600	291900	292200	292500	292800	293100	293400	293700	294000	294300	294600	294900	295200	295500	295800	296100	296400	296700	297000	297300	297600	297900	298200	298500	298800	299100	299400	299700	300000	300300	300600	300900	301200	301500	301800	302100	302400	302700	303000	303300	303600	303900	304200	304500	304800	305100	305400	305700	306000	306300	306600	306900	307200	307500	307800	308100	308400	308700	309000	309300	309600	309900	310200	310500	310800	311100	311400	311700	312000	312300	312600	312900	313200	313500	313800	314100	314400	314700	315000	315300	315600	315900	316200	316500	316800	317100	317400	317700	318000	318300	318600	318900	319200	319500	319800	320100	320400	320700	321000	321300	321600	321900	322200	322500	322800	323100	323400	323700	324000	324300	324600	324900	325200	325500	325800	326100	326400	326700	327000	327300	327600	327900	328200	328500	328800	329100	329400	329700	330000	330300	330600	330900	331200	331500	331800	332100	332400	332700	333000	333300	333600	333900	334200	334500	334800	335100	335400	335700	336000	336300	336600	336900	337200	337500	337800	338100	338400	338700	339000	339300	339600	339900	340200	340500	340800	341100	341400	341700	342000	342300	342600	342900	343200	343500	343800	344100	344400	344700	345000	345300	345600	345900	346200	346500
------------------------------	--	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------

Calculate Containment Area Width		29.00	ft	8839.20	mm		Note: verify that this dimension matches the Containment Area Width on the other chemical rooms in this facility. If not, input the larger value in the user overwrite on the room with the shorter dimension	
47.) Optional: User Overwrite of Containment Area Width			ft	2,438.46	mm			
Calculate Fire Sprinkler Water Volume		1856.00	gal	7.03	m3			Assumes 0.2 gpm/ft for 20 min if chemical installed inside a building. If chemical is outside or under a canopy, assume no fire sprinkler water volume.
Calculate 120% of One Storage Tank Volume		4803.36	gal	18.79	m3			
Calculate 30% of All Tank Volume		1240.84	gal	4.70	m3			
Calculate Maximum Volume + Fire Flow Volume		6819.38	gal	25.61	m3			
Tank Pads Volume		150.80	cf	4.27	m3			
Tank Pads Volume		1128.04	gal	4.27	m3			
Calculate Maximum Volume + Fire Flow Volume + Tank Pad Volume		7647.39	gal	30.08	m3			
Calculate Maximum Volume + Fire Flow Volume + Tank Pad Volume		1062.41	cf	30.08	m3			
Calculate Containment Wall Height (including freeboard)		2.79	ft	850.29	mm		Note: verify that this dimension matches the Containment Wall Height on the other chemical rooms in this facility. If not, input the larger value in the user overwrite on the room with the shorter dimension	120% of 1 tank volume or 30% of all tank volume whichever is greater + fire flow volume + 6" freeboard. Should be ≤ 4.5'.
48.) Optional: User Overwrite of Containment Wall Height			ft	2,438.46	mm			
49.) Input Depth of Burial		0.00	ft	0.00	mm	DB		
50.) Input Cutback Slope		1.00	ft					Cutback slope should be 1:1 for depth of burial ≤ 5 ft, and at least 1:5:1 for depth of burial > 5 ft.
51.) Input Over Excavation Depth		1.00	ft	0.00	mm	OEXD		
Mechanical Sizing Requirements:								
Pipe Name	Input Velocity	Unit (English)	Input Velocity	Unit (Metric)	Standard Pipe Size	Unit (English)	Nominal Pipe Size	
Chemical Transfer Pump Suction Header Piping	2.00	fps	0.61	m/s	1.00	in	25.00	
Chemical Transfer Pump Discharge Header Piping	8.00	fps	1.83	m/s	1.00	in	25.00	
Chemical Metering Pump Suction Header Piping	2.00	fps	0.61	m/s	1.00	in	25.00	
Chemical Metering Pump Discharge Header Piping	8.00	fps	1.83	m/s	1.00	in	25.00	
Mechanical Material Requirements:								
Pipe Name	Pipe ID	Installation Type	Pipe Material	Pipe Lining Material	Pipe Coating Material	Pipe Length	# Elbows	
Chemical Transfer Pump Suction Header Piping	CTSH	Exposed	PVC	NA	NA	0.00	0.00	
Chemical Transfer Pump Discharge Header Piping	CTDH	Exposed	PVC	NA	NA	0.00	0.00	
Chemical Metering Pump Suction Header Piping	LCSH	Exposed	PVC	NA	NA	45.00	8.00	
Chemical Metering Pump Discharge Header Piping	LCDH	Exposed	PVC	NA	NA	45.00	8.00	
L+W #MP*4								
Electrical User Inputs and Sizing Requirements:								
52.) Is this a "Critical" Facility (requiring standby power)?	No	Y/N						
53.) Is there SWGR?	No							
Electrical Equipment Lengths:								
Item	Quantity	HP per Each	AFD's Required?	MCC Spaces for Motor Starters	MCC Spaces for AFD's less than 50hp)	MCC Spaces for Breakers	MCC	
Metering Pumps	0.00	0.50	No	0.00	0.00	0.00	0.00	
User Defined Item #1	0.00	0.00	No	0.00	0.00	0.00	0.00	
User Defined Item #2	0.00	0.00	No	0.00	0.00	0.00	0.00	
User Defined Item #3	0.00	0.00	No	0.00	0.00	0.00	0.00	
TOTAL	0.00			0.00	0.00	0.00	0.00	
Total MCC Spaces								
Electrical Equipment Widths:								
Equipment	Depth (ft)							
MCC	0.00							
Small AFD's	0.00							
Large AFD's	0.00							
Switchgear	0.00							
Maximum Depth	0.00							
Clear Distances:								
Clear Distance	Width	Length	Comment					
CD1		3.00	Clear Distance between wall and MCC					
CD2		1.00	Typically 3 feet					
CD3		0.00	Clear Distance between MCC and Small AFD					
CD4		0.00	Typically Zero					
CD5		0.00	Clear Distance between Large AFD and Switchgear					
CD6	4.00		Typically Zero					
CD7	3.00		Clear Distance behind Switchgear (if there is no Switchgear, this distance will be zero)					
Contingency Length		0.00	Typically 3 feet					
Contingency Length		0.00	Contingency length					
Typically Zero								
Electric Room Length (ft):								
CD1	3.00							
MCC	0.00							
CD2	1.00							
Small AFD's	0.00							
CD3	0.00							
Large AFD's	0.00							
CD4	0.00							
Switchgear	0.00							
CD5	0.00							
Contingency	0.00							
Total Length	0.00							
Electric Room Width (ft):								
CD6	0.00	If there is no switchgear, this distance will be zero.						
Maximum Equipment Depth	0.00							
CD7	3.00							
Total Width	0.00							
COST TABLE FOR TANKS & PUMPS:								
Tanks (Installed Cost per Gallon)	Unit Cost							
FRP	\$2.84							
Polyethylene (PE)	\$ 2.11							
Phenolic Lined Steel (PLS)	\$6.01							
Chemical Feed Pumps (Cost per Each)	\$7,991.45							

Estimating Dimensions:	Value English	Unit (English)	Value (Metric)	Unit (Metric)	Name	Comment	Red Flags
Logic Tests ("1" = Yes, "0" = No)							
Is this Chemical Feed System included?	1						
Is the Method of Delivery "Tank Truck"?	1						
Is Day Tank Required? (1 = Yes, 0 = No)	0						
Tank Truck without Day Tank (True or False)	TRUE						
Tank Truck with Day Tank (True or False)	FALSE						
Tank Truck without Day Tank (1 = Yes, 0 = No)	1						Tank Truck without Day Tank
Tank Truck with Day Tank (1 = Yes, 0 = No)	0						Tank Truck without Day Tank
Is the Method of Delivery "Tote"?	0						Tote
Is the Method of Delivery "Drum"?	0						Drum
Length of Module (Tank Truck)	16.00	ft	4876.80	mm			
Length of Module (Tote)	0.00	ft	0.00	mm			
Length of Module (Drum)	0.00	ft	0.00	mm			
Width of Module (Tank Truck without Transfer Pump and Day Tank)	28.00	ft	8839.20	mm			
Width of Module (Tank Truck with Transfer Pump and Day Tank)	0.00	ft	0.00	mm			
Width of Module (Tote)	0.00	ft	0.00	mm			
Width of Module (Drum)	0.00	ft	0.00	mm			
Area of Module	0.00	sf	0.00	m ²			
Number of Bulk Tanks (each)	1	#					
Diameter of Bulk Tank	8.00	ft	2438.40	mm			
Volume of Each Bulk Tank	4136.13	gal	15.88	m ³			
Bulk Tank Material	FRP	Type					
Number of Day Tanks (each)	0	#					
Diameter of Day Tank	0.00	ft					
Volume of Each Day Tank	0.00	gal	0.00	m ³			
Number of Transfer Pumps	0	#					
Transfer Pump Capacity (each)	0.00	gpm	0.00	l/min			Assume fill each tank in 20 min
Number of Metering Pumps	2	#					
Module Covered? ("1" = YES, "0" = NO)	0						
If Module Exists, Is it Covered? ("1" = Yes, "0" = No)	0						
Containment Wall Height	2.79	ft	850.28	mm			
Slab on Grade Thickness	8.00	in	228.80	mm			Model based on 8"
Slab on Grade Thickness	0.75	ft	228.60	mm			
Containment Wall Thickness	8.00	in	203.20	mm			Model based on 8"
Containment Wall Thickness	0.67	ft	203.20	mm			
Tank Pad / Metering Pump Pad Height	3.00	ft	914.40	mm			EPH
Corridor							
Length	16.00	ft	4876.80	mm			
Width	0.00	ft	0.00	mm			
Area	0.00	sf	0.00	m ²			
Corridor Covered? ("1" = YES, "0" = NO)	1						
Electrical Room:							
Slab on Grade:							
Length	0.00	ft	0.00	mm			
Width	0.00	ft	0.00	mm			
Concrete Thickness	12.00	in	304.80	mm			Model based on 12"
Concrete Thickness	1.00	ft	304.80	mm			
Walls:							
Height = FBD	10.00	ft					Fixed
Concrete Thickness	8.00	in	203.20	mm			Model based on 8"
Concrete Thickness	0.67	ft	203.20	mm			
Overall Dimensions							
Containment Area Length	16.00	ft	4876.80	mm			
Containment Area Width	29.00	ft	8839.20	mm			
Containment Area	484.00	sf	43.11	m ²			
Corridor Area Length	16.00	ft	4876.80	mm			
Corridor Area Width	0.00	ft	0.00	mm			
Corridor Area	0.00	sf	0.00	m ²			
Electrical Area Length	0.00	ft	0.00	mm			
Electrical Area Width	0.00	ft	0.00	mm			
Electrical Room Area	0.00	sf	0.00	m ²			
Chemical Facility Area	484.00	sf	43.11	m ²			
Covered Chemical Area (Building)	484.00	sf	43.11	m ²			
Covered Chemical Area (Canopy)	0.00	sf	0.00	m ²			
Total Covered Area	484.00	sf	43.11	m ²			
Excavation Depth	1.75	ft	533.40	mm			
Description	Quantity (English)	Unit (English)	Quantity (Metric)	Unit (Metric)	\$/Unit	Total Cost	User Over-Write
SITEWORK							
Excavation	39.40	CY	30.12	m ³	\$8.35	\$250	
Imported Structural Backfill	34.37	CY	26.28	m ³	\$48.10	\$1,653	
Native Backfill	5.10	CY	3.90	m ³	\$7.80	\$40	
Haul Excess	34.30	CY	28.22	m ³	\$2,210.78	\$111	
Allowance for Misc Items	5%					\$2,321	
Subtotal							
CONCRETE							
Slab on Grade	16.47	CY	12.59	m ³	\$356.31	\$5,688	
Containment Walls	4.20	CY	3.21	m ³	\$704.01	\$2,958	
Bulk Tank Pads	12.57	CY	9.81	m ³	\$356.31	\$4,477	
Day Tank Pads	0.00	CY	0.00	m ³	\$356.31	\$0	
Transfer Pump Pads	0.00	CY	0.00	m ³	\$356.31	\$0	
Metering Pump Pads	1.33	CY	1.02	m ³	\$356.31	\$475	
Corridor	0.00	CY	0.00	m ³	\$356.31	\$0	
Slab on Grade	0.00	CY	0.00	m ³	\$356.31	\$0	
Electrical Room	0.00	CY	0.00	m ³	\$13,776.70	\$889	
Slab on Grade	5%					\$14,468	
Allowance for Misc Items							
Subtotal							
MASONRY							
Chemical Building	484.00	SF	43.11	m ²	\$187.30	\$86,907	
Electrical Room	0.00	SF	0.00	m ²	\$156.08	\$0	
Subtotal	484.00					\$86,907	
METALS							
Canopy	0.00	sf	0.00	m ²	\$39.18	\$0	
Metal Stairway	1	EA			\$7,804.16	\$7,804	
Grating	1	EA			\$1,873.00	\$1,873	
Allowance for Misc Items	10%				\$9,677.16	\$988	
Subtotal						\$10,645	
EQUIPMENT							
Bulk Tank	1	EA			\$10,932.59	\$10,933	
Day Tank	0	EA			\$0.00	\$0	
Transfer Pump	0	EA			\$0.00	\$0	

Budgetary Quote: (CPES w/
automatically add installation fa

Metering Pump	2	EA			\$7,891.45	\$15,983
Allowance for Misc Items	10%				\$26,515.49	\$2,692
Subtotal						\$29,607
INSTRUMENTS & CONTROLS						
Instruments						
Chemical Tank Radar Level Transmitters	1	EA			\$977.83	\$978
Chemical Tank Beacons	1	EA			\$977.83	\$978
Day Tank Differential Pressure Transmitter	0	EA			\$977.83	\$0
Drum or Tote Weigh Scale	0	EA			\$1,303.51	\$0
Metering Pump Discharge Pressure Switch	2	EA			\$651.76	\$1,304
Magmeter	1	EA			\$651.76	\$652
Sump Pump Float Switch	1	EA			\$325.88	\$326
Eyewash	1	EA			\$327.83	\$327
Number of Analog I/O Counts	5	EA			\$247.87	\$1,238
Number of Digital I/O Counts	17	EA			\$56.66	\$997
Number of Local Panels	1	EA			\$12,753.00	\$12,753
Number of PLCs	1	EA			\$13,015.11	\$13,035
I&C Conduit & Wire	112.00	LF	34.14	m	\$11.30	\$1,268
Allowance for Misc Items	10%				\$34,003.44	\$3,400
Subtotal						\$37,404
MECHANICAL						
Pipe						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0.00	LF	0.00	m	\$12.29	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0.00	LF	0.00	m	\$12.29	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	45.00	LF	13.72	m	\$12.29	\$553
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	45.00	LF	13.72	m	\$12.29	\$553
Elbows						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$9.43	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$9.43	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	8	EA			\$9.43	\$75
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	8	EA			\$9.43	\$75
Tees						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$9.81	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$9.81	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	2	EA			\$9.81	\$20
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	2	EA			\$9.81	\$20
End Caps						
Chemical Transfer Pump Suction Header Piping-CTSH (1-inch, Exposed, PVC)	0	EA			\$4.23	\$0
Chemical Transfer Pump Discharge Header Piping-CTDH (1-inch, Exposed, PVC)	0	EA			\$5.29	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC)	2	EA			\$5.29	\$11
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC)	2	EA			\$5.29	\$11
Valves						
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	0	EA			\$53.55	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	0	EA			\$53.55	\$0
Chemical Metering Pump Suction Header Piping-LCSH (1-inch, Exposed, PVC, V-902, Diaphragm)	4	EA			\$53.55	\$214
Chemical Metering Pump Discharge Header Piping-LCDH (1-inch, Exposed, PVC, V-902, Diaphragm)	4	EA			\$53.55	\$214
Allowance for Misc Items	10%				\$1,745.51	\$175
Subtotal						\$1,820
ELECTRICAL						
# MCC Sections	0	#			\$8,044.96	\$0
Switchgear	0	EA			\$37,008.81	\$0
Adjustable Frequency Drives						
Metering Pumps	0	EA			\$8,370.07	\$0
User Defined Item #1	0	EA			\$8,308.83	\$0
User Defined Item #2	0	EA			\$8,308.83	\$0
User Defined Item #3	0	EA			\$8,308.83	\$0
Electrical Conduit & Wire	0.00	LF	0.00	m	\$11.30	\$0
Allowance for Misc Items	10%				\$0.00	\$0
Subtotal						\$0
USER DEFINED ESTIMATE ITEMS:						
Item 1 Description	0.00	QUANT (ENGLISH)	UNIT (ENGLISH)	QUANT (METRIC)	UNIT (METRIC)	\$/UNIT
Item 2 Description	0.00					
Item 3 Description	0.00					
Item 4 Description	0.00					
Item 5 Description	0.00					
Item 6 Description	0.00					
Item 7 Description	0.00					
Item 8 Description	0.00					
Item 9 Description	0.00					
Item 10 Description	0.00					
Item 11 Description	0.00					
Item 12 Description	0.00					
Item 13 Description	0.00					
Item 14 Description	0.00					
Item 15 Description	0.00					
Subtotal						\$183,272
Subtotal						
ALLOWANCES:						
Finishes Allowance	2.00%		User Override			
I&C Allowance	2.00%			\$203,635	\$4,073	
Mechanical Allowance	4.00%			\$203,635	\$8,145	
Electrical Allowance	2.00%			\$203,635	\$4,073	Facility Cost Name
Facility Cost	484	Building SF		\$438.87	\$203,635	CFLFC01
Facility Cost with Standard Additional Project Costs Added	484	Building SF		\$438.87	\$203,635	CFLFC02
Facility Cost with Standard Additional Project Costs and Contractor Markups Added	484	Building SF		\$653.27	\$303,118	CFLFC03
Facility Cost, Contractor Markups, and Location Adjustment Factor Added (excluding ALL Additional Project Costs)	484	Building SF		\$840.88	\$287,387	CFLFC05
Facility Cost with Standard Additional Project Costs, Contractor Markups, and Location Adjustment Factor Added	484	Building SF		\$840.88	\$287,387	CFLFC06