

Dissolved Oxygen Addition

Benefits

- Stabilize distribution system
- Inhibit hydrogen sulfide reversion
- Improve overall T&O profile
- Potentially reduce dependency on Cl2 to maintain ORP
- Microbial growth on filter media may remove organic N

Drawbacks

- Potential over-aeration
- Incremental DO addition
- No guarantee of reduced Cl2 dose

Dissolved Oxygen Addition

- Most stable oxidant
 - Maintain ORP ~ 500 even at full loss of chlorine
- Does not generate DBP's
- No health based or aesthetic standard (MCL/SMCL)
- Can be adjusted to maximize distribution system benefit

Technologies for Dissolved Oxygen Addition

1

Option	Liquid Oxygen	On-Site O ₂ Generation	Air Injection	Hydrogen Peroxide		
Capital Cost	\$1.5 - 2.0M	\$2.0 - 2.5M	\$0.2 - \$0.5M	\$0.5-\$1.0M		
Benefits	CommonEquipmentLow O&M	• Common Equipment	 Common Equipment Low Cost 	 Additional Oxidation may benefit T&O issues 		
Drawbacks	 Vapor is flammable Worker Safety Public Concern 	 Indoor Installation Higher Operating Cost than LOX 	 Nitrogen Addition (Air is 78% nitrogen) 	 Highest Operating Cost 		

Air Injection System

- Venturi System with small horsepower side-stream pump
- Flow Control Valve for 90%+ Gas Transfer Efficiency
- Instrumentation and control systems for SCADA integration
- Inject pre- or post- filter to maximum water quality benefit

Air Injection System

Step	Time to Implement	Completion Date		
Water Quality Testing	1-2 months	January-2017		
Project Report	2 months	January-2017		
DOH Approval	1 month	February-2017		
Design	4 months	April-2017		
Permitting	1 months	May-2017		
Construction	4-5 months	October-2017		
Start Up/Incremental Use	3-6 months	February-2018		

Technologies for Silica Removal

NOT RECOMMENDED

Option	Reverse Osmosis	Lime Softening	Precip w/o Softening	Electro- coagulation	Ion Exchange	Activated Alumina
Feasibility	Effective	Effective	Effective	Effective	Effective	Effective
Capital Cost	\$20-\$30M	\$15-20M	\$10-15M	Unknown	\$15-20M	\$15-20M
Testing	Flat Plate Test	Jar Test	Jar Test	Jar and Pilot Testing	Pilot Test	Small Scale Column Test
Benefits	 Organic N Softening H2S Blending 	Organic NSoftening			Softening	
Drawbacks	• Low Recovery (increased waste)	• O&M • Sludge	• TDS • Sludge	• Sludge (less than others)	• Resin Fouling • Demin • T&O	• O&M

Silica Removal by Reverse Osmosis

3 MGD Brackish Water: Hilton Head, SC Installation Cost (2006): \$9 million 3 Flow Streams

- Feed (unfinished water in)
- Concentrate (recycle flow)
- Permeate (finished water out)
- Feed = Concentrate + Permeate

Recovery = $\frac{\text{Permeate}}{\text{Feed}}$

Product Out Water In

Expected silica level in concentrate for feedwater containing 74 mg/L silica

Silica Removal by Lime Softening

- Warm or hot process often used in oil extraction to protect steam generators
- Solid magnesium oxide (MgO) is added to remove silica, forms Mg(OH)2
- Silica adsorbs onto Mg(OH)2; higher affinity for fresh (young) surfaces
- **P**Opportunity for higher removal efficiency using MgCl2 instead of MgO
- Copportunity to reduce operating costs using dissolved Mg with acid at < pH

Silica Removal by Precipitation

Magnesium based

Sodium Aluminate based

Considerations:

- Best SiO₂ removal: 22%
- Efficiency: 0.15 SiO₂/Mg
- Requires pH > 10.5
- Slow to precipitate and settle
- Sodium hydroxide demand

Considerations:

- Best SiO₂ removal: 79%
- Efficiency: 0.47 SiO₂/NaAlO₂
- Requires 8.0 < pH < 8.2
- Slightly alkalizing
- Small sulfuric acid demand

- Emerging Technology, around since 1889 but typically < 1 MGD
- Drinking water, wastewater, stormwater and industrial uses
- Forms dissolution and hydrolysis of metals at the anode (Fe or Al)
- Forms hydroxyl ions and hydrogen gas at the cathode that may have benefits for oxidation and microbial disinfection

Data showing silica reduction process using EC with chemicals to treat RO concentrate at 100 mg/L of silica.

- WaterTectonics, 8/16/2016

Silica Removal by Ion Exchange

12

- Desilizer (poor man's demineralizer)
- Fouling is common
- Regeneration requires excess caustic and may require heat
- Inefficient Process
- Some systems waste 30%

Silica Removal by Activated Alumina

13

- Regenerate using caustic followed by acid
- Media fouling by silica
- Long contact times (CT)
- Strips naturally occurring fluoride

Silica removal by adsorption, Minara RO Brine

Financial Summary					
	Budget Amount	Added /Spent	Funds Available	Additional Funds Required	Total Contract
Original Contract	\$217,256	-	\$217,256	-	\$217,256
Amendment 1	\$327,550	\$327,550	\$544,806	-	\$544,806
Total Contract	\$544,806	(\$390,102)		-	\$544,806
DO Design (only)	\$166,564	-	\$154 704	\$11,860	\$556,666
Si Concepts (only)	\$67,296	-	\$154,704	\$0	\$544,806
DO & Si Concepts	\$233,860	-		\$79,156	\$623,962

